Rapid Ship Detection in SAR Images Based on YOLOv3

被引:0
|
作者
Zhu, Mingming [1 ]
Hu, Guoping [2 ]
Zhou, Hao [2 ]
Lu, Chunguang [1 ]
机构
[1] Air Force Engn Univ, Grad Coll, Xian, Peoples R China
[2] Air Force Engn Univ, Air & Missile Def Coll, Xian, Peoples R China
关键词
synthetic aperture radar; ship detection; deep convolutional neural networks; YOLOv3;
D O I
10.1109/ccisp51026.2020.9273476
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the increasing resolution and data volume of synthetic aperture radar images, ship detection in synthetic aperture radar images has become one of the hot spots of academic research. In recent years, object detection methods based on deep convolutional neural networks have gradually become the mainstream methods in the field of object detection based on natural images. To address the problems of low accuracy rate and detection speed of ship detection methods in synthetic aperture radar images, an end-to-end ship detection method based on YOLOv3 is proposed. Unlike the previous predicted position offset, we directly predict the position coordinates of the detection frame and set the parameters of the anchor frame through dimension clusters. The multi-scale output combines high-level semantic information from high-level feature maps and detailed information from low-level feature maps. The simulation results show that our proposed method is more accurate and faster than other methods.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 50 条
  • [1] SAR Ship Detection Based on Improved YOLOv3
    Chen, Dong
    Ju, Yanwei
    IET Conference Proceedings, 2020, 2020 (09): : 929 - 934
  • [2] Ship detection in SAR image based on improved YOLOv3
    Chen D.
    Ju Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (04): : 937 - 943
  • [3] HIGH-SPEED SHIP DETECTION IN SAR IMAGES BY IMPROVED YOLOV3
    Zhang, Tianwen
    Zhang, Xiaoling
    Shi, Jun
    Wei, Shunjun
    2019 16TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICWAMTIP), 2019, : 149 - 152
  • [4] Modified Yolov3 for Ship Detection with Visible and Infrared Images
    Chang, Lena
    Chen, Yi-Ting
    Wang, Jung-Hua
    Chang, Yang-Lang
    ELECTRONICS, 2022, 11 (05)
  • [5] Ship Detection with Lightweight Network Based on YOLOV3
    Kong, Decheng
    Wang, Ping
    Wei, Xiang
    Xu, Zeyu
    INTERNATIONAL CONFERENCE ON MECHANICAL DESIGN AND SIMULATION (MDS 2022), 2022, 12261
  • [6] Lightweight Ship Detection Methods Based on YOLOv3 and DenseNet
    Li, Zhelin
    Zhao, Lining
    Han, Xu
    Pan, Mingyang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [7] Ship Detection: An Improved YOLOv3 Method
    Cui, Haiying
    Yang, Yang
    Liu, Mingyong
    Shi, Tingchao
    Qi, Qian
    OCEANS 2019 - MARSEILLE, 2019,
  • [8] An Improved YOLOv3 Model for Arbitrary-oriented Ship Detection in SAR Image
    Xu Y.
    Gu Y.
    Peng D.
    Liu J.
    Chen H.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (08): : 1698 - 1707
  • [9] A SAR Image Building Detection Algorithm Based on Improved YOLOv3
    Li X.
    Su J.
    Yang L.
    Su, Juan (suj04@mails.tsinghua.edu.cn), 1600, China Ordnance Society (41): : 1347 - 1359
  • [10] Improved YOLOv3 Algorithm for Ship Target Detection
    Chen, Liankai
    Li, Bangyu
    Qi, Liang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7288 - 7293