Baquara: A Holistic Ontological Framework for Movement Analysis Using Linked Data

被引:0
|
作者
Fileto, Renato [1 ]
Krueger, Marcelo [1 ]
Pelekis, Nikos [1 ]
Theodoridis, Yannis [1 ]
Renso, Chiara [1 ]
机构
[1] Univ Fed Santa Catarina, PPGCC INE CTC, Florianopolis, SC, Brazil
来源
CONCEPTUAL MODELING, ER 2013 | 2013年 / 8217卷
关键词
Moving objects trajectories; semantic enrichment; linked data; movement analysis; ontology;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Movement understanding frequently requires further information and knowledge than what can be obtained from bare spatio-temporal traces. Despite recent progress in trajectory data management, there is still a gap between the spatio-temporal aspects and the semantics involved. This gap hinders trajectory analysis benefiting from growing collections of linked data, with well-defined and widely agreed semantics, already available on the Web. This article introduces Baquara, an ontology with rich constructs, associated with a system architecture and an approach to narrow this gap. The Baquara ontology functions as a conceptual framework for semantic enrichment of movement data with annotations based on linked data. The proposed architecture and approach reveal new possibilities for trajectory analysis, using database management systems and triple stores extended with spatial data and operators. The viability of the proposal and the expressiveness of the Baquara ontology and enabled queries are investigated in a case study using real sets of trajectories and linked data.
引用
收藏
页码:342 / +
页数:3
相关论文
共 50 条
  • [1] The Baquara2 knowledge-based framework for semantic enrichment and analysis of movement data
    Fileto, Renato
    May, Cleto
    Renso, Chiara
    Pelekis, Nikos
    Klein, Douglas
    Theodoridis, Yannis
    DATA & KNOWLEDGE ENGINEERING, 2015, 98 : 104 - 122
  • [2] SHELDON: Semantic Holistic framEwork for LinkeD ONtology Data
    Recupero, Diego Reforgiato
    Nuzzolese, Andrea Giovanni
    Consoli, Sergio
    Gangemi, Aldo
    Presutti, Valentina
    KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT, EKAW 2014, 2015, 8982 : 136 - 139
  • [3] Extracting knowledge from text using SHELDON, a Semantic Holistic framEwork for LinkeD ONtology data
    Recupero, Diego Reforgiato
    Nuzzolese, Andrea G.
    Consoli, Sergio
    Presutti, Valentina
    Peroni, Silvio
    Mongiov, Misael
    WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2015, : 235 - 238
  • [4] Holistic Entity Clustering for Linked Data
    Nentwig, Markus
    Gross, Anika
    Rahm, Erhard
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 194 - 201
  • [5] Ontological CAD Data Interoperability Framework
    Garcia, Luis Enrique Ramos
    SEMAPRO 2010: THE FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN SEMANTIC PROCESSING, 2010, : 79 - 82
  • [6] Linked and Coordinated Visual Analysis of Eye Movement Data
    Burch, Michael
    Wallner, Guenter
    Furst, Veerle
    Lungu, Teodor-Cristian
    Boelhouwers, Daan
    Rajasekaran, Dhiksha
    Farla, Richard
    van Heesch, Sander
    2022 ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS, ETRA 2022, 2022,
  • [7] A classification framework and computational methods for human interaction analysis using movement data
    Su, Rongxiang
    Dodge, Somayeh
    Goulias, Konstadinos
    TRANSACTIONS IN GIS, 2022, 26 (04) : 1665 - 1682
  • [8] HOBBIT: Holistic Benchmarking of Big Linked Data
    Ngomo, AxelCyrille Ngonga
    Rojas, Alejandra Garcia
    Fundulaki, Irini
    ERCIM NEWS, 2016, (105): : 46 - +
  • [9] An ontological investigation over human relations in linked data
    Vacura, Miroslav
    Svatek, Vojtech
    Gangemi, Aldo
    APPLIED ONTOLOGY, 2016, 11 (03) : 227 - 254
  • [10] Improved secondary analysis of linked data: a framework and an illustration
    Chambers, Ray
    da Silva, Andrea Diniz
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 37 - 59