共 50 条
Experimental and theoretical spectroscopic (FT-IR, FT-Raman, UV-VIS) analysis, natural bonding orbitals and molecular docking studies on 2-bromo-6-methoxynaphthalene: A potential anti-cancer drug
被引:14
|作者:
Saji, Rinnu Sara
[1
,2
]
Prasana, Johanan Christian
[1
]
Muthu, S.
[3
,4
]
George, Jacob
[1
,2
]
机构:
[1] Madras Christian Coll, Dept Phys, East Tambaram 600059, Tamil Nadu, India
[2] Univ Madras, Chennai 600005, Tamil Nadu, India
[3] Arignar Anna Govt Arts Coll, Dept Phys, Cheyyar 604407, Tamil Nadu, India
[4] Puratchi Thalaivar Dr MGR Govt Arts & Sci Coll, Dept Phys, Uthiramerur 603406, Tamil Nadu, India
来源:
关键词:
FT-IR;
FT Raman;
Molecular docking;
NBO;
ELF;
NONSTEROIDAL ANTIINFLAMMATORY DRUGS;
COLORECTAL-CANCER;
NBO ANALYSIS;
RISK;
DISCOVERY;
DISEASE;
ASPIRIN;
HOMO;
LUMO;
NLO;
D O I:
10.1016/j.heliyon.2021.e07213
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The vibrational, electronic and charge transfer studies on 2-bromo-6-methoxynaphthalene (2BMN) were done using DFT method with B3LYP/6-311++G(d,p) theory using GAUSSIAN 09W software. Theoretical and experimental investigations on FT-IR and FT Raman were executed on 2BMN. The calculated vibrational wavenumbers were scaled using suitable scaling factors and vibrational assignments were done to all modes of vibrations using Potential Energy Distribution (PED). Frontier Molecular Orbitals were calculated using TD-DFT method and the HOMO-LUMO energy gap was also obtained. Other electronic properties and global parameters for 2BMN were found using the HOMO-LUMO energy values. An energy gap of 4.208 eV shows the stability of the molecule. The reactive sites were predicted using Molecular Electrostatic Potential (MEP), Electron Localization Function (ELF) and Fukui calculations. Hence all electrophilic sites and nucleophilic areas of the molecule were determined. The delocalization of electron density was studied using NBO calculations. The intramolecular transitions and stability of structure were explained using in detail using the former. As the compound satisfies drug-like properties and has a softness value (indicating its less toxic nature), it may be used as a pharmaceutical product. Molecular docking studies were made and the protein-ligand binding properties were discussed. It was found out that title compound exhibits anti-cancer activities. The low binding energy predicts that the compound may be modified as a drug for treating Cancer.
引用
收藏
页数:12
相关论文