On the partial terminal Steiner tree problem

被引:13
|
作者
Hsieh, Sun-Yuan [1 ]
Gao, Huang-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
来源
JOURNAL OF SUPERCOMPUTING | 2007年 / 41卷 / 01期
关键词
the Steiner tree problem; the partial terminal Steiner tree problem; NP-complete; MAX SNP-hard; approximation algorithms;
D O I
10.1007/s11227-007-0102-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate a practical variant of the well-known graph Steiner tree problem. For a complete graph G = (V, E) with length function l : E -> R+ and two vertex subsets R subset of V and R ' subset of R, a partial terminal Steiner tree is a Steiner tree which contains all vertices in R such that all vertices in R backslash R ' belong to the leaves of this Steiner tree. The partial terminal Steiner tree problem is to find a partial terminal Steiner tree T whose total lengths Sigma((u, v)epsilon T) l(u, v) is minimum. In this paper, we show that the problem is both NP-complete and MAX SNP-hard when the lengths of edges are restricted to either 1 or 2. We also provide an approximation algorithm for the problem.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [1] On the partial terminal Steiner tree problem
    Sun-Yuan Hsieh
    Huang-Ming Gao
    The Journal of Supercomputing, 2007, 41 : 41 - 52
  • [2] On the terminal Steiner tree problem
    Lin, GH
    Xue, GL
    INFORMATION PROCESSING LETTERS, 2002, 84 (02) : 103 - 107
  • [3] An Improved Approximation Ratio to the Partial-Terminal Steiner Tree Problem
    Lee, Chia-Wei
    Huang, Chao-Wen
    Pi, Wen-Hao
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (01) : 274 - 279
  • [4] A note on the terminal Steiner tree problem
    Fuchs, B
    INFORMATION PROCESSING LETTERS, 2003, 87 (04) : 219 - 220
  • [5] APPROXIMATION ALGORITHMS FOR THE TERMINAL STEINER TREE PROBLEM
    Chen, Yen Hung
    Lin, Ying Chin
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2018, 17 (03) : 246 - 255
  • [6] On approximation algorithms for the terminal Steiner tree problem
    Drake, DE
    Hougardy, S
    INFORMATION PROCESSING LETTERS, 2004, 89 (01) : 15 - 18
  • [7] Algorithms for the minimum diameter terminal Steiner tree problem
    Wei Ding
    Ke Qiu
    Journal of Combinatorial Optimization, 2014, 28 : 837 - 853
  • [8] An Improved Approximation Algorithm for the Terminal Steiner Tree Problem
    Chen, Yen Hung
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT III, 2011, 6784 : 141 - 151
  • [9] Algorithms for the minimum diameter terminal Steiner tree problem
    Ding, Wei
    Qiu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 837 - 853
  • [10] An improved approximation algorithm for the partial-terminal Steiner tree problem with edge cost 1 or 2
    Wei, Chia-Chen
    Hsieh, Sun-Yuan
    Lee, Chia-Wei
    Peng, Sheng-Lung
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 35 : 62 - 71