Operator entanglement entropy of the time evolution operator in chaotic systems

被引:58
|
作者
Zhou, Tianci [1 ]
Luitz, David J.
机构
[1] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; ENTANGLING POWER; QUANTUM; THERMALIZATION; DYNAMICS; MAPS;
D O I
10.1103/PhysRevB.95.094206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the growth of the operator entanglement entropy (EE) of the time evolution operator in chaotic, many-body localized (MBL) and Floquet systems. In the random-field Heisenberg model we find a universal power-law growth of the operator EE at weak disorder, a logarithmic growth at strong disorder, and extensive saturation values in both cases. In a Floquet spin model, the saturation value after an initial linear growth is identical to the value of a random unitary operator (the Page value). We understand these properties by mapping the operator EE to a global quench problem evolved with a similar parent Hamiltonian in an enlarged Hilbert space with the same chaotic, MBL, and Floquet properties as the original Hamiltonian. The scaling and saturation properties reflect the spreading of the state EE of the corresponding time evolution. We conclude that the EE of the evolution operator should characterize the propagation of information in these systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Entanglement entropy from TFD entropy operator
    Dias, M.
    Nedel, Daniel L.
    Senise, C. R., Jr.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (13):
  • [2] Entanglement production by evolution operator
    Yukalov, V. I.
    Yukalova, E. P.
    25TH ANNUAL INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'16), 2017, 826
  • [3] Universal local operator quenches and entanglement entropy
    Arpan Bhattacharyya
    Tadashi Takayanagi
    Koji Umemoto
    Journal of High Energy Physics, 2019
  • [4] Universal local operator quenches and entanglement entropy
    Bhattacharyya, Arpan
    Takayanagi, Tadashi
    Umemoto, Koji
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [5] Minimal and maximal operator spaces and operator systems in entanglement theory
    Johnston, Nathaniel
    Kribs, David W.
    Paulsen, Vern I.
    Pereira, Rajesh
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (08) : 2407 - 2423
  • [6] Entanglement and entropy operator for strings in pp-wave time dependent background
    Gadelha, A. L.
    Marchioro, Dafni Z.
    Nedel, Daniel L.
    PHYSICS LETTERS B, 2006, 639 (3-4) : 383 - 388
  • [7] Entropy, Age and Time Operator
    Gialampoukidis, Ilias
    Antoniou, Ioannis
    ENTROPY, 2015, 17 (01): : 407 - 424
  • [8] Dynamical systems with entropy operator
    Popkov Yu.S.
    Computational Mathematics and Modeling, 2000, 11 (2) : 181 - 186
  • [9] Operator space entanglement entropy in a transverse Ising chain
    Prosen, Tomaz
    Pizorn, Iztok
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [10] Operator space entanglement entropy in XY spin chains
    Pizorn, Iztok
    Prosen, Tomaz
    PHYSICAL REVIEW B, 2009, 79 (18):