Nonparametric estimation of large covariance matrices with conditional sparsity

被引:13
|
作者
Wang, Hanchao [1 ]
Peng, Bin [2 ]
Li, Degui [3 ]
Leng, Chenlei [4 ]
机构
[1] Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan, Peoples R China
[2] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic, Australia
[3] Univ York, Dept Math, York, N Yorkshire, England
[4] Univ Warwick, Dept Stat, Coventry, W Midlands, England
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Approximate factor model; Kernel estimation; Large covariance matrix; Sparsity; Uniform convergence; HIGH-DIMENSIONAL COVARIANCE; FACTOR MODELS; CONVERGENCE; NUMBER; RATES;
D O I
10.1016/j.jeconom.2020.09.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies estimation of covariance matrices with conditional sparse structure. We overcome the challenge of estimating dense matrices using a factor structure, the challenge of estimating large-dimensional matrices by postulating sparsity on covariance of random noises, and the challenge of estimating varying matrices by allowing factor loadings to smoothly change. A kernel-weighted estimation approach combined with generalised shrinkage is proposed. Under some technical conditions, we derive uniform consistency for the developed estimation method and obtain convergence rates. Numerical studies including simulation and an empirical application are presented to examine the finite-sample performance of the developed methodology. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
  • [1] Nonparametric estimation of large covariance matrices of longitudinal data
    Wu, WB
    Pourahmadi, M
    BIOMETRIKA, 2003, 90 (04) : 831 - 844
  • [2] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [3] Rates of convergence in conditional covariance matrix with nonparametric entries estimation
    Loubes, Jean-Michel
    Marteau, Clement
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4536 - 4558
  • [4] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    ANNALS OF STATISTICS, 2008, 36 (01): : 199 - 227
  • [5] Efficient estimation of conditional covariance matrices for dimension reduction
    Da Veiga, Sebastien
    Loubes, Jean-Michel
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4403 - 4424
  • [6] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32
  • [8] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [9] Estimation of Large Dynamic Covariance Matrices: A Selective Review
    Li, Degui
    ECONOMETRICS AND STATISTICS, 2024, 29 : 16 - 30
  • [10] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656