Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity

被引:3
|
作者
Locherbach, E. [1 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, SAMM, 90 Rue Tolbiac, F-75013 Paris, France
关键词
Diffusions with position-dependent jumps; Nummelin splitting; Total variation coupling; Continuous-time Markov processes; Convergence to equilibrium; Asymptotic pseudotrajectories; NONPARAMETRIC-ESTIMATION; EXPONENTIAL ERGODICITY; LIMIT-THEOREMS; STABILITY; EQUATIONS; REGULARITY; SYSTEMS; SDES;
D O I
10.1007/s10959-019-00947-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a time-inhomogeneous Markov process X=(Xt)t and we are interested in its longtime behavior. The infinitesimal generator of the process is given for any sufficiently smooth test function f by Ltf(x)= n-ary sumation i=1d partial differential f partial differential xi(x)bi(t,x); Rm[f(x+c(t,z,x))-f(x)]gamma(t,z,x)mu(dz), Moreover, we introduce a coupling method for the limit process which is entirely based on certain of its big jumps and which relies on the regeneration method. We state explicit conditions in terms of the coefficients of the process allowing control of the speed of convergence to equilibrium both for X and for X over bar (X) over bar.
引用
收藏
页码:2280 / 2314
页数:35
相关论文
共 50 条
  • [1] Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity
    E. Löcherbach
    Journal of Theoretical Probability, 2020, 33 : 2280 - 2314
  • [2] Asymptotic Inference for Jump Diffusions with State-Dependent Intensity
    Becheri, I. Gaia
    Drost, Feike C.
    Werker, Bas J. M.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (02) : 520 - 542
  • [3] REGULARITY AND STABILITY FOR THE SEMIGROUP OF JUMP DIFFUSIONS WITH STATE-DEPENDENT INTENSITY
    Bally, Vlad
    Goreac, Dan
    Rabiet, Victor
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3028 - 3074
  • [4] Time-Inhomogeneous Jump Processes and Variable Order Operators
    Orsingher, Enzo
    Ricciuti, Costantino
    Toaldo, Bruno
    POTENTIAL ANALYSIS, 2016, 45 (03) : 435 - 461
  • [5] On stability of time-inhomogeneous Markov jump linear systems
    Lun, Yuriy Zacchia
    D'Innocenzo, Alessandro
    Di Benedetto, Maria Domenica
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5527 - 5532
  • [6] Time-Inhomogeneous Jump Processes and Variable Order Operators
    Enzo Orsingher
    Costantino Ricciuti
    Bruno Toaldo
    Potential Analysis, 2016, 45 : 435 - 461
  • [7] Robust stability of time-inhomogeneous Markov jump linear systems
    Lun, Yuriy Zacchia
    D'Innocenzo, Alessandro
    Di Benedetto, Maria Domenica
    IFAC PAPERSONLINE, 2017, 50 (01): : 3418 - 3423
  • [8] Jump locations of jump-diffusion processes with state-dependent rates
    Miles, Christopher E.
    Keener, James P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [9] Convergence rate to equilibrium in Wasserstein distance for reflected jump-diffusions
    Sarantsev, Andrey
    STATISTICS & PROBABILITY LETTERS, 2020, 165
  • [10] Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities
    Glasserman, P
    Merener, N
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2041): : 111 - 127