Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

被引:445
|
作者
Zhang, Chenhao [1 ]
Yang, Shize [2 ]
Wu, Jingjie [3 ]
Liu, Mingjie [3 ,4 ]
Yazdi, Sadegh [3 ]
Ren, Muqing [1 ]
Sha, Junwei [1 ]
Zhong, Jun [5 ]
Nie, Kaiqi [5 ]
Jalilov, Almaz S. [1 ]
Li, Zhenyuan [3 ]
Li, Huaming [6 ]
Yakobson, Boris I. [1 ,7 ,8 ]
Wu, Qin [4 ]
Ringe, Emilie [1 ,3 ]
Xu, Hui [3 ,6 ]
Ajayan, Pulickel M. [1 ,3 ,7 ,8 ]
Tour, James M. [1 ,3 ,7 ,8 ]
机构
[1] Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[5] Soochow Univ, Inst Funct Nano & Soft Mat, Suzhou 215123, Peoples R China
[6] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[7] Rice Univ, Smalley Curl Inst, 6100 Main St, Houston, TX 77005 USA
[8] Rice Univ, NanoCarbon Ctr, 6100 Main St, Houston, TX 77005 USA
关键词
atomic iron; CO2 reduction reaction; electrocatalysts; nitrogen-doped graphene; OXYGEN-REDUCTION; ELECTROCATALYTIC ACTIVITY; PORPHYRIN MULTILAYERS; CATALYTIC SITES; OXIDE SHEETS; CARBON; FE; EFFICIENT; HYDROCARBONS; EVOLUTION;
D O I
10.1002/aenm.201703487
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe-N-4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2
    Dongare, Saudagar
    Singh, Neetu
    Bhunia, Haripada
    JOURNAL OF CO2 UTILIZATION, 2021, 44
  • [2] Electrochemical Reduction of CO2 on Nitrogen-Doped Carbon Catalysts With and Without Iron
    Silva, Wanderson O.
    Silva, Gabriel C.
    Webster, Richard F.
    Benedetti, Tania M.
    Tilley, Richard D.
    Ticianelli, Edson A.
    CHEMELECTROCHEM, 2019, 6 (17) : 4626 - 4636
  • [3] Bismuth Oxychloride Dispersed on Nitrogen-Doped Carbon as Catalyst for the Electrochemical Reduction of CO2 to Formate
    Subramanian, Siddhartha
    Chukwuike, V., I
    Kulandainathan, M. Anbu
    Barik, Rakesh C.
    CHEMELECTROCHEM, 2020, 7 (10) : 2265 - 2273
  • [4] Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction
    Chai, Guo-Liang
    Guo, Zheng-Xiao
    CHEMICAL SCIENCE, 2016, 7 (02) : 1268 - 1275
  • [5] Effects of nitrogen and oxygen on electrochemical reduction of CO2 in nitrogen-doped carbon black
    Zeng, Qingting
    Yang, Guangxing
    Chen, Jianhao
    Zhang, Qiao
    Liu, Zhiting
    Qin, Binhao
    Peng, Feng
    CARBON, 2023, 202 : 1 - 11
  • [6] CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction
    Xiong, Wei
    Yang, Jian
    Shuai, Ling
    Hou, Yang
    Qiu, Ming
    Li, Xinyong
    Leung, Michael K. H.
    CHEMELECTROCHEM, 2019, 6 (24): : 5951 - 5957
  • [7] Mesopore-Augmented Electrochemical CO2 Reduction on Nitrogen-Doped Carbon
    Han, Xu
    Zhang, Ting
    Biset-Peiro, Marti
    Roldan, Alberto
    Ceccato, Marcel
    Lock, Nina
    Pedersen, Steen Uttrup
    Morante, Joan Ramon
    Arbiol, Jordi
    Daasbjerg, Kim
    SMALL, 2025, 21 (10)
  • [8] Highly dispersed cobalt phthalocyanine on nitrogen-doped carbon towards electrocatalytic reduction of CO2 to CO
    Jingjing Ma
    Honglin Zhu
    Yueqing Zheng
    Ionics, 2021, 27 : 2583 - 2590
  • [9] Highly dispersed cobalt phthalocyanine on nitrogen-doped carbon towards electrocatalytic reduction of CO2 to CO
    Ma, Jingjing
    Zhu, Honglin
    Zheng, Yueqing
    IONICS, 2021, 27 (06) : 2583 - 2590
  • [10] Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO2 Reduction
    Zhu, Minghui
    Cao, Chenxi
    Chen, Jiacheng
    Sun, Yang
    Ye, Ruquan
    Xu, Jing
    Han, Yi-Fan
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2435 - 2440