Analytic first-order properties from explicitly correlated many-body perturbation theory and Gaussian geminal basis

被引:10
|
作者
Bukowski, R
Jeziorski, B
Szalewicz, K
机构
[1] Univ Warsaw, Dept Chem, Quantum Chem Lab, PL-02093 Warsaw, Poland
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 108卷 / 19期
关键词
D O I
10.1063/1.476235
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Theory of analytic first-order properties is formulated in a basis set independent way using the first-quantized many-body perturbation theory. This formulation allows the correlation effects to be described with explicitly correlated basis sets. The basis of Gaussian geminals is employed to calculate the second-and third-order correlation corrections to the lowest multipole moments of the H-2 and LiH molecules. The same formalism is also utilized to compute the intra-atomic correlation contribution to the first-order interaction energy for the helium dimer. The results compare favorably with the literature data obtained using the conventional, orbital basis approach. (C) 1998 American Institute of Physics.
引用
收藏
页码:7946 / 7958
页数:13
相关论文
共 50 条
  • [1] Monte Carlo explicitly correlated second-order many-body perturbation theory
    Johnson, Cole M.
    Doran, Alexander E.
    Zhang, Jinmei
    Valeev, Edward F.
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15):
  • [2] Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy
    Willow, Soohaeng Yoo
    Zhang, Jinmei
    Valeev, Edward F.
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (03):
  • [3] ANALYTIC STRUCTURE OF MANY-BODY PERTURBATION THEORY
    KATZ, A
    NUCLEAR PHYSICS, 1962, 29 (03): : 353 - &
  • [4] RELATIVISTIC MANY-BODY PERTURBATION-THEORY USING ANALYTIC BASIS FUNCTIONS
    QUINEY, HM
    GRANT, IP
    WILSON, S
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1990, 23 (13) : L271 - L278
  • [5] ANALYTIC MANY-BODY PERTURBATION-THEORY MBPT(4) RESPONSE PROPERTIES
    TRUCKS, GW
    SALTER, EA
    NOGA, J
    BARTLETT, RJ
    CHEMICAL PHYSICS LETTERS, 1988, 150 (1-2) : 37 - 44
  • [6] Second-order many-body perturbation theory
    Hirata, So
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [7] Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor
    Manby, FR
    Werner, HJ
    Adler, TB
    May, AJ
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (09):
  • [8] Monte Carlo explicitly correlated many-body Green's function theory
    Johnson, Cole M.
    Doran, Alexander E.
    Ten-no, Seiichiro L.
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (17):
  • [9] An explicitly correlated second order Moller-Plesset theory using a frozen Gaussian geminal
    May, AJ
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (10): : 4479 - 4485
  • [10] Ground and excited state first-order properties in many-body expanded full configuration interaction theory
    Eriksen, Janus J.
    Gauss, Juergen
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (15):