Engineering a U(1) lattice gauge theory in classical electric circuits

被引:18
|
作者
Riechert, Hannes [1 ,2 ]
Halimeh, Jad C. [3 ,4 ]
Kasper, Valentin [5 ,6 ]
Bretheau, Landry [2 ]
Zohar, Erez [7 ]
Hauke, Philipp [3 ,4 ]
Jendrzejewski, Fred [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
[2] Inst Polytech Paris, Lab Phys Matiere Condensee, Ecole Polytech, CNRS, F-91120 Palaiseau, France
[3] Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-138123 Trento, Italy
[4] Univ Trento, Dept Phys, Via Sommar 14, I-138123 Trento, Italy
[5] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
以色列科学基金会; 欧盟地平线“2020”;
关键词
QUANTUM SIMULATION; REALIZATION; INVARIANCE; DYNAMICS;
D O I
10.1103/PhysRevB.105.205141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lattice gauge theories are fundamental to such distinct fields as particle physics, condensed matter, and quantum information science. Their local symmetries enforce the charge conservation observed in the laws of physics. Impressive experimental progress has demonstrated that they can be engineered in table-top experiments using synthetic quantum systems. However, the challenges posed by the scalability of such lattice gauge simulators are pressing, thereby making the exploration of different experimental setups desirable. Here, we realize a U(1) lattice gauge theory with five matter sites and four gauge links in classical electric circuits employing nonlinear elements connecting LC oscillators. This allows for probing previously inaccessible spectral and transport properties in a multisite system. We directly observe Gauss???s law, known from electrodynamics, and the emergence of long-range interactions between massive particles in full agreement with theoretical predictions. Our paper paves the way for investigations of increasingly complex gauge theories on table-top classical setups, and demonstrates the precise control of nonlinear effects within metamaterial devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] U(1) LATTICE GAUGE-THEORY IN THE ELECTRIC-FIELD REPRESENTATION
    KOONIN, SE
    UMLAND, EA
    ZIRNBAUER, MR
    PHYSICAL REVIEW D, 1986, 33 (06): : 1795 - 1805
  • [2] Nonstabilizerness in U(1) lattice gauge theory
    Falcao, Pedro R. Nicacio
    Tarabunga, Poetri Sonya
    Frau, Martina
    Tirrito, Emanuele
    Zakrzewski, Jakub
    Dalmonte, Marcello
    PHYSICAL REVIEW B, 2025, 111 (08)
  • [3] Phase diagram of a lattice U(1) gauge theory with gauge fixing
    Bock, W
    Golterman, MFL
    Shamir, Y
    PHYSICAL REVIEW D, 1998, 58 (05)
  • [4] U(1) lattice gauge theory with a topological action
    Akerlund, Oscar
    de Forcrand, Philippe
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [5] GAUGE-FIXING IN U(1) LATTICE GAUGE-THEORY
    BORNYAKOV, VG
    MITRJUSHKIN, VK
    MULLERPREUSSKER, M
    PAHL, F
    NUCLEAR PHYSICS B, 1994, : 802 - 804
  • [6] The Coulomb law in the U(1) lattice gauge theory
    Cella, G
    Heller, UM
    Mitrjushkin, VK
    Viceré, A
    THEORY OF ELEMENTARY PARTICLES, 1998, : 295 - 301
  • [7] Glueballs and monopoles in U(1) lattice gauge theory
    Stack, JD
    Filipczyk, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 537 - 539
  • [8] U(1) lattice gauge theory with a topological action
    Oscar Akerlund
    Philippe de Forcrand
    Journal of High Energy Physics, 2015
  • [9] POTENTIAL IN LATTICE U(1) GAUGE-THEORY
    DEGRAND, TA
    TOUSSAINT, D
    PHYSICAL REVIEW D, 1981, 24 (02): : 466 - 470
  • [10] PHOTON IN U(1) LATTICE GAUGE-THEORY
    BERG, B
    PANAGIOTAKOPOULOS, C
    PHYSICAL REVIEW LETTERS, 1984, 52 (02) : 94 - 97