Whole-Brain Imaging of Subvoxel T1-Diffusion Correlation Spectra in Human Subjects

被引:14
|
作者
Avram, Alexandru V. [1 ,2 ]
Sarlls, Joelle E. [3 ]
Basser, Peter J. [1 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Bethesda, MD 20892 USA
[2] Henry M Jackson Fdn Adv Mil Med, Ctr Neurosci & Regenerat Med, Bethesda, MD 20817 USA
[3] NINDS, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
关键词
isotropic diffusion encoding; T1-diffusion weighting; correlation spectroscopic MRI; multidimensional MRI; relaxation spectroscopy MRI; mean diffusivity distribution; relaxographic imaging; inversion recovery; ATTENUATED INVERSION-RECOVERY; 2D MRI RELAXOMETRY; DIFFUSION TENSOR; IN-VIVO; MAGNETIZATION-TRANSFER; MYELIN WATER; CONSTRAINED OPTIMIZATION; SELECTIVE EXCITATION; MULTICOMPONENT T-1; WHITE-MATTER;
D O I
10.3389/fnins.2021.671465
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
T1 relaxation and water mobility generate eloquent MRI tissue contrasts with great diagnostic value in many neuroradiological applications. However, conventional methods do not adequately quantify the microscopic heterogeneity of these important biophysical properties within a voxel, and therefore have limited biological specificity. We describe a new correlation spectroscopic (CS) MRI method for measuring how T1 and mean diffusivity (MD) co-vary in microscopic tissue environments. We develop a clinical pulse sequence that combines inversion recovery (IR) with single-shot isotropic diffusion encoding (IDE) to efficiently acquire whole-brain MRIs with a wide range of joint T1-MD weightings. Unlike conventional diffusion encoding, the IDE preparation ensures that all subvoxel water pools are weighted by their MDs regardless of the sizes, shapes, and orientations of their corresponding microscopic diffusion tensors. Accordingly, IR-IDE measurements are well-suited for model-free, quantitative spectroscopic analysis of microscopic water pools. Using numerical simulations, phantom experiments, and data from healthy volunteers we demonstrate how IR-IDE MRIs can be processed to reconstruct maps of two-dimensional joint probability density functions, i.e., correlation spectra, of subvoxel T1-MD values. In vivo T1-MD spectra show distinct cerebrospinal fluid and parenchymal tissue components specific to white matter, cortical gray matter, basal ganglia, and myelinated fiber pathways, suggesting the potential for improved biological specificity. The one-dimensional marginal distributions derived from the T1-MD correlation spectra agree well with results from other relaxation spectroscopic and quantitative MRI studies, validating the T1-MD contrast encoding and the spectral reconstruction. Mapping subvoxel T1-diffusion correlations in patient populations may provide a more nuanced, comprehensive, sensitive, and specific neuroradiological assessment of the non-specific changes seen on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted MRIs (DWIs) in cancer, ischemic stroke, or brain injury.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mapping Human Whole-Brain Structural Networks with Diffusion MRI
    Hagmann, Patric
    Kurant, Maciej
    Gigandet, Xavier
    Thiran, Patrick
    Wedeen, Van J.
    Meuli, Reto
    Thiran, Jean-Philippe
    PLOS ONE, 2007, 2 (07):
  • [2] Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke
    Eastwood, JD
    Lev, MH
    Wintermark, M
    Fitzek, C
    Barboriak, DP
    Delong, DM
    Lee, TY
    Azhari, T
    Herzau, M
    Chilukuri, VR
    Provenzale, JM
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2003, 24 (09) : 1869 - 1875
  • [3] Whole-brain MR Spectroscopic Imaging and Diffusion Kurtosis Imaging in HIV-1 Clade C Infection
    Govind, Varan
    Vyas, Sameer
    Sharma, Aman
    Ahuja, Chirag
    Gupta, Vivek
    Mohanty, Manju
    Arheart, Kristopher
    Kumar, Mahendra
    Khandelwal, Niranjan
    JOURNAL OF NEUROVIROLOGY, 2015, 21 : S25 - S25
  • [4] Folded-end dipole transceiver array for human whole-brain imaging at 7 T
    Avdievich, Nikolai I.
    Solomakha, Georgiy
    Ruhm, Loreen
    Nikulin, Anton V.
    Magill, Arthur W.
    Scheffler, Klaus
    NMR IN BIOMEDICINE, 2021, 34 (08)
  • [5] Comparison of accelerated T1-weighted whole-brain structural-imaging protocols
    Falkovskiy, Pavel
    Brenner, Daniel
    Feiweier, Thorsten
    Kannengiesser, Stephan
    Marechal, Benedicte
    Kober, Tobias
    Roche, Alexis
    Thostenson, Kaely
    Meuli, Reto
    Reyes, Denise
    Stoecker, Tony
    Bernstein, Matt A.
    Thiran, Jean-Philippe
    Krueger, Gunnar
    NEUROIMAGE, 2016, 124 : 157 - 167
  • [6] Reproducibility and Reliability of Short-TE Whole-Brain MR Spectroscopic Imaging of Human Brain at 3T
    Ding, Xiao-Qi
    Maudsley, Andrew A.
    Sabati, Mohammad
    Sheriff, Sulaiman
    Dellani, Paulo R.
    Lanfermann, Heinrich
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (03) : 921 - 928
  • [7] Whole-brain apparent diffusion coefficient in traumatic brain injury: Correlation with Glasgow coma scale score
    Shanmuganathan, K
    Gullapalli, RP
    Mirvis, SE
    Roys, S
    Murthy, P
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2004, 25 (04) : 539 - 544
  • [8] High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project
    Vu, A. T.
    Auerbach, E.
    Lenglet, C.
    Moeller, S.
    Sotiropoulos, S. N.
    Jbabdi, S.
    Andersson, J.
    Yacoub, E.
    Ugurbil, K.
    NEUROIMAGE, 2015, 122 : 318 - 331
  • [9] A meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder
    Vederine, Francois-Eric
    Wessa, Michele
    Leboyer, Marion
    Houenou, Josselin
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2011, 35 (08): : 1820 - 1826
  • [10] Whole-brain histogram and voxel-based analyses of diffusion tensor imaging in patients with leukoaraiosis: Correlation with motor and cognitive impairment
    Della Nave, R.
    Foresti, S.
    Pratesi, A.
    Ginestroni, A.
    Inzitari, M.
    Salvadori, E.
    Giannelli, M.
    Diciotti, S.
    Inzitari, D.
    Mascalchi, M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2007, 28 (07) : 1313 - 1319