Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism

被引:210
|
作者
Zhou, Hong-Bo [1 ]
Liu, Yue-Lin [1 ]
Jin, Shuo [1 ]
Zhang, Ying [1 ]
Luo, G. -N. [2 ]
Lu, Guang-Hong [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; BLISTER FORMATION; NONCOVALENT INTERACTIONS; ELECTRON-GAS; CARBON; FLUX; RETENTION; SURFACE; METALS; SINGLE;
D O I
10.1088/0029-5515/50/2/025016
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have investigated the dissolution, segregation and diffusion of hydrogen (H) in a tungsten (W) grain boundary (GB) using a first-principles method in order to understand the GB trapping mechanism of H. Optimal charge density plays an essential role in such a GB trapping mechanism. Dissolution and segregation of H are directly associated with the optimal charge density, which can be reflected by the H solution and segregation energy sequence for the different interstitial sites. To occupy the optimal-charge-density site, H can be easily trapped by the W GB with the solution and segregation energy of -0.23 eV and -1.11 eV, respectively. Kinetically, such a trapping is easier to realize due to the much lower diffusion barrier of 0.13-0.16 eV from the bulk to the GB in comparison with the segregation energy, suggesting that it is quite difficult for the trapped H to escape out of the GB. However, the GB can hold no more than 2 H atoms because the isosurface of optimal charge density almost disappears with the second H atom in, leading to the conclusion that H-2 molecule and thus H bubble cannot form in the W GB. Taking into account the lower vacancy formation energy in the GB as compared with the bulk, we propose that the experimentally observed H bubble formation in the W GB should be via a vacancy trapping mechanism.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dissolution and diffusion of hydrogen in a molybdenum grain boundary: A first-principles investigation
    Sun, Lu
    Jin, Shuo
    Zhou, Hong-Bo
    Zhang, Ying
    Lu, Guang-Hong
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 102 : 243 - 249
  • [2] Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary
    Yu, Yi
    Shu, Xiaolin
    Liu, Yi-Nan
    Lu, Guang-Hong
    JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) : 91 - 95
  • [3] Diffusion, Trapping, and Dissociation Behaviours of Helium at the Σ5 Grain Boundary in Tungsten: A Molecular Dynamics Study
    Fu, Baoqin
    Qiu, Mingjie
    Cui, Jiechao
    Wang, Jun
    Hou, Qing
    JOURNAL OF NUCLEAR MATERIALS, 2021, 543
  • [4] Investigating behavior of hydrogen in zirconium by first-principles: From dissolution, diffusion to the interaction with vacancy
    Wang, Zi-Qi
    Li, Yu-Hao
    Li, Zhong-Zhu
    Zhou, Hong-Bo
    Lu, Guang-Hong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 458 : 1 - 6
  • [5] First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel
    Di Stefano, Davide
    Mrovec, Matous
    Elsaesser, Christian
    ACTA MATERIALIA, 2015, 98 : 306 - 312
  • [6] First-principles study of hydrogen trapping and diffusion at grain boundaries in γ-Fe
    He, Yang
    Su, Yunjuan
    Yu, Haobo
    Chen, Changfeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (10) : 7589 - 7600
  • [7] Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles
    Ohsawa, Kazuhito
    Goto, Junya
    Yamakami, Masahiro
    Yamaguchi, Masatake
    Yagi, Masatoshi
    PHYSICAL REVIEW B, 2010, 82 (18):
  • [8] Strong trapping and slow diffusion of helium in a tungsten grain boundary
    Wang, Xin-Xin
    Niu, Liang-Liang
    Wang, Shaoqing
    JOURNAL OF NUCLEAR MATERIALS, 2017, 487 : 158 - 166
  • [10] Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test
    Zhou, Hong-bo
    Jin, Shuo
    Zhang, Ying
    Lu, Guang-hong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2011, 21 (03) : 240 - 245