Effect of different modification methods on fluidized bed hydrogen reduction of cohesive iron ore fines

被引:16
|
作者
Du, Zhan [1 ]
Ge, Yu [1 ]
Liu, Fan [2 ]
Fan, Chuanlin [1 ]
Pan, Feng [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Hydrogen ironmaking; Fluidized bed direct reduction; Granulation modification; Structure reorganization; Cohesive iron ore fines; COATING MGO; SELF-AGGLOMERATION; PHASE-CHANGE; STICKING; FE2O3; CONCENTRATE; MECHANISM; KINETICS; OXIDE; DEFLUIDIZATION;
D O I
10.1016/j.powtec.2022.117226
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To develop breakthrough technologies that enable a drastic reduction in CO2 emissions from the ironmaking industry, the direct reduction of iron ore fines by H2-N2 in a fluidized bed with different modification methods was investigated. The results show that powder coating could prevent the defluidization of cohesive iron ore fines through the physical spacer effect, while granulation modification with cheap cement as the binder not only inhibits the occurrence of sticking, but also greatly accelerates the reduction rate. Microstructure observations indicate that granulation modification has reconstructed the irregularly shaped iron ore fines to be spherical, consisting of small grains, and created porous channels for gas diffusion, thereby increasing the reduction rate. In addition, structure reorganization constructs nonsticking barriers on the surface using native gangue and cement, and the occurrence of defluidization is avoided. Moreover, granulation modification has been demonstrated to be an effective and general solution for efficient and stable fluidized bed reduction of iron ore fines. This makes hydrogen ironmaking through fluidized bed direct reduction technically attractive. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] DDPM Simulation for Fluidization Behavior and Reduction of Iron Ore Fines with Hydrogen in the Fluidized Bed
    Zhou, Wenlei
    Su, Fuyong
    Yang, Likun
    Zhang, Sizong
    Huo, Hailong
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2024, 55 (05): : 3561 - 3572
  • [2] FLUIDIZED-BED REDUCTION OF IRON-ORE FINES BY COAL FINES
    HAQUE, R
    RAY, HS
    MUKHERJEE, A
    ISIJ INTERNATIONAL, 1991, 31 (11) : 1279 - 1285
  • [3] Parameter Optimization for Hydrogen-Induced Fluidized Bed Reduction of Magnetite Iron Ore Fines
    Zheng, Heng
    Schenk, Johannes
    Daghagheleh, Oday
    Taferner, Bernd
    METALS, 2023, 13 (02)
  • [4] Direct reduction of iron ore fines in a fluidized bed using hydrogen-rich gas
    Gudenau, HW
    Hirsch, M
    Denecke, H
    Degel, R
    STAHL UND EISEN, 1997, 117 (04): : 91 - &
  • [5] Fluidization behavior and reducibility of iron ore fines during hydrogen-induced fluidized bed reduction
    Spreitzer, Daniel
    Schenk, Johannes
    PARTICUOLOGY, 2020, 52 : 36 - 46
  • [6] REDUCTION BEHAVIOR OF IRON-ORE FINES AND CIRCULATION CHARACTERISTICS OF FINES IN PREREDUCTION FLUIDIZED-BED
    ARIYAMA, T
    ISOZAKI, S
    MATSUBARA, S
    KAWATA, H
    KONDO, K
    KOBAYASHI, I
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1993, 79 (12): : 1323 - 1328
  • [7] REDUCTION BEHAVIOR OF IRON-ORE FINES AND CIRCULATION CHARACTERISTICS OF FINES IN PREREDUCTION FLUIDIZED-BED
    ARIYAMA, T
    ISOZAKI, S
    MATSUBARA, S
    KAWATA, H
    KONDO, K
    KOBAYASHI, I
    ISIJ INTERNATIONAL, 1993, 33 (12) : 1211 - 1219
  • [8] REDUCTION OF IRON-ORE IN A FLUIDIZED-BED REACTOR .2. REDUCTION OF IRON-ORE FINES WITH CHARCOAL AND METHANE IN A FLUIDIZED-BED REACTOR
    MEHROTRA, SP
    KUMAR, B
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1991, 44 (02): : 101 - 110
  • [9] Effect of Coating MgO on Sticking Behavior during Reduction of Iron Ore Concentrate Fines in Fluidized Bed
    Shao, Jianhua
    Guo, Zhancheng
    Tang, Huiqing
    STEEL RESEARCH INTERNATIONAL, 2013, 84 (02) : 111 - 118
  • [10] Investigation on the Kinetics of Iron Ore Fines Reduction by CO in a Micro-fluidized Bed
    Chen, Hongsheng
    Zheng, Zhong
    Shi, Wanyuan
    NEW PARADIGM OF PARTICLE SCIENCE AND TECHNOLOGY, PROCEEDINGS OF THE 7TH WORLD CONGRESS ON PARTICLE TECHNOLOGY, 2015, 102 : 1726 - 1735