Multiple linear regression model under nonnormality

被引:56
|
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
  • [1] A model of multiple linear regression
    Popescu, Ciprian
    Giuclea, Marius
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2007, 8 (02): : 137 - 144
  • [3] Statistical disclosure control via sufficiency under the multiple linear regression model
    Klein, Martin Daniel
    Datta, Gauri Sankar
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2018, 12 (01) : 100 - 110
  • [4] Linear regression under model uncertainty
    Yang, Shuzhen
    Yao, Jianfeng
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (04): : 523 - 546
  • [5] Asymptotic expansion in reduced rank regression under normality and nonnormality
    Ogasawara, Haruhiko
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (07) : 1051 - 1070
  • [6] Permutation test for a multiple linear regression model
    Tantawanich, Siriwan
    Siripanich, Pachitjanut
    PROCEEDINGS OF THE 11TH ANNUAL CONFERENCE OF ASIA PACIFIC DECISION SCIENCES INSTITUTE: INNOVATION & SERVICE EXCELLENCE FOR COMPETITIVE ADVANTAGE IN THE GLOBAL ENVIRONMENT, 2006, : 362 - +
  • [7] Incremental algorithm of multiple linear regression model
    Huang, Lele, 1600, Beijing University of Aeronautics and Astronautics (BUAA) (40):
  • [8] On the coefficient of multiple determination in a linear regression model
    Nabendu Pal
    Wooi K. Lim
    Journal of the Italian Statistical Society, 1998, 7 (2) : 129 - 157
  • [9] A multiple linear regression model for imprecise information
    Maria Brigida Ferraro
    Paolo Giordani
    Metrika, 2012, 75 : 1049 - 1068
  • [10] A multiple linear regression model for imprecise information
    Ferraro, Maria Brigida
    Giordani, Paolo
    METRIKA, 2012, 75 (08) : 1049 - 1068