Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration

被引:4
|
作者
Wu, Huan [1 ]
Yin, Guangfu [1 ]
Pu, Ximing [1 ]
Wang, Juan [1 ]
Liao, Xiaoming [1 ]
Huang, Zhongbing [1 ]
机构
[1] Sichuan Univ, Coll Biomed Engn, Chengdu 610064, Peoples R China
基金
国家重点研发计划;
关键词
extracellular matrix; PLGA; osteoblastogenesis; osteoclast; osteoclastogenesis; bone repair; OSTEOGENIC DIFFERENTIATION; SCAFFOLDS; EXPANSION; GLYCOSAMINOGLYCANS; ACTIVATION; GROWTH;
D O I
10.1021/acsabm.2c00264
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Extracellular matrix (ECM)-based therapies have been developed to improve bone repair because of their abundance of bioactive components. Besides the osteogenic promotion and the immune response, the potential effect of the ECM on the coordination between osteoblastogenesis and osteoclastogenesis in vivo should also deserve great attention because both osteoblasts and osteodasts get involved in bone regeneration and are critical for the final repair outcome. Herein, based on our previous study on decellularization, antigen removal, and growth factor retention, porous poly (lactic-co-glycolic acid) (PLGA) scaffolds decorated with the bone marrow mesenchymal stem cell (BMSC)-derived ECM were prepared, and the functions of the ECM on BMSC osteogenic differentiation and osteodastogenesis in vitro were preferentially investigated. Afterward, bone regeneration and osteoclast formation in vivo induced by ECM-decorated PLGA scaffolds were further studied. The in vitro tests revealed that ECM-decorated PLGA scaffolds obviously facilitated BMSC proliferation and osteogenic differentiation. However, when osteodast precursors were cultured on the BMSC-derived ECM, the number and size of osteodasts, expression of cathepsin K and matrix metalloproteinase 9, and tartrate-resistant acid phosphatase activity were notably decreased, accompanied by the reduction in the reactive oxygen species (ROS) leveL Interestingly, the addition of exogenous hydrogen peroxide elevated the osteodast amount on the ECM and up-regulated the resorption-related enzyme levels, implying that the repressive effect of the BMSC-derived ECM on osteodasts may be related to the intracellular ROS. After implantation into calvarial defects, the ECM-decorated PLGA scaffolds significantly increased bone volume and bone mineral density compared with bare PLGA scaffolds and did not stimulate the overmuch formation of osteodasts in vivo. This study evidenced that the BMSC-derived ECM may coordinate osteoblastogenesis and osteodastogenesis and promote favorable bone formation without stimulating bone resorption.
引用
收藏
页码:2913 / 2927
页数:15
相关论文
共 50 条
  • [1] Bone Marrow Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Periodontal Regeneration
    Liu, Li
    Guo, Shujuan
    Shi, Weiwei
    Liu, Qian
    Huo, Fangjun
    Wu, Yafei
    Tian, Weidong
    TISSUE ENGINEERING PART A, 2021, 27 (13-14) : 962 - 976
  • [2] Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds
    Xu, Yan
    Xu, Guang-yue
    Tang, Cheng
    Wei, Bo
    Pei, Xuan
    Gui, Jian-chao
    Min, Byoung-Hyun
    Jin, Cheng-zhe
    Wang, Li-ming
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015, 103 (03) : 670 - 678
  • [3] Bone Marrow Stromal Cell-derived Extracellular Matrix Promotes Mesenchymal Stem Cell Motility
    Ling, J.
    Lai, Y.
    Skinner, C. M.
    Chen, X.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2008, 23 : S160 - S160
  • [4] Composite scaffolds composed of bone marrow mesenchymal stem cell-derived extracellular matrix and marrow clots promote marrow cell retention and proliferation
    Wei, Bo
    Guo, Yang
    Xu, Yan
    Mao, Fengyong
    Yao, Qingqiang
    Jin, Chengzhe
    Gu, Qiangrong
    Wang, Liming
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (07) : 2374 - 2382
  • [5] Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration
    Wang, Xiaoqin
    Thomsen, Peter
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 (01) : 18 - 36
  • [6] An Autologous Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair
    Tang, Cheng
    Jin, Chengzhe
    Du, Xiaotao
    Yan, Chao
    Min, Byoung-Hyun
    Xu, Yan
    Wang, Liming
    TISSUE ENGINEERING PART A, 2014, 20 (17-18) : 2455 - 2462
  • [7] Bone marrow mesenchymal stem cell-derived exosomes enhance osteoclastogenesis during alveolar bone deterioration in rats
    Xu, Shuyu
    Wang, Zuolin
    RSC ADVANCES, 2017, 7 (34): : 21153 - 21163
  • [8] Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo
    Yunhao Qin
    Lian Wang
    Zhengliang Gao
    Genyin Chen
    Changqing Zhang
    Scientific Reports, 6
  • [9] Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo
    Qin, Yunhao
    Wang, Lian
    Gao, Zhengliang
    Chen, Genyin
    Zhang, Changqing
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Feasibility of Autologous Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix Scaffold for Cartilage Tissue Engineering
    Tang, Cheng
    Xu, Yan
    Jin, Chengzhe
    Min, Byoung-Hyun
    Li, Zhiyong
    Pei, Xuan
    Wang, Liming
    ARTIFICIAL ORGANS, 2013, 37 (12) : E179 - E190