Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

被引:105
|
作者
Cichy, Radoslaw Martin [1 ,2 ]
Khosla, Aditya [2 ]
Pantazis, Dimitrios [3 ]
Oliva, Aude [2 ]
机构
[1] Free Univ Berlin, Dept Educ & Psychol, Berlin, Germany
[2] MIT, Comp Sci & Artificial Intelligence Lab, 32-D430, Cambridge, MA 02139 USA
[3] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Scene perception; Spatial layout; Magnetoencephalography; Deep neural network; Representational similarity analysis; OBJECT RECOGNITION; CORTICAL REPRESENTATION; HIERARCHICAL-MODELS; FACE PERCEPTION; GRID CELLS; CORTEX; AREA; RECORDINGS; BOUNDARIES; SPACE;
D O I
10.1016/j.neuroimage.2016.03.063
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at 100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at 250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain.
引用
收藏
页码:346 / 358
页数:13
相关论文
共 50 条
  • [1] Semantic categorization in the human brain:: Spatiotemporal dynamics revealed by magnetoencephalography
    Löw, A
    Bentin, S
    Rockstroh, B
    Silberman, Y
    Gomolla, A
    Cohen, R
    Elbert, T
    PSYCHOLOGICAL SCIENCE, 2003, 14 (04) : 367 - 372
  • [2] Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks
    Dwivedi, Kshitij
    Cichy, Radoslaw Martin
    Roig, Gemma
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2021, 33 (10) : 2032 - 2043
  • [3] The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography
    Astle, Duncan E.
    Luckhoo, Henry
    Woolrich, Mark
    Kuo, Bo-Cheng
    Nobre, Anna C.
    Scerif, Gaia
    CEREBRAL CORTEX, 2015, 25 (10) : 3868 - 3876
  • [4] Synchronous dynamic brain networks revealed by magnetoencephalography
    Langheim, FJP
    Leuthold, AC
    Georgopoulos, AP
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (02) : 455 - 459
  • [5] Deep Multiple Instance Convolutional Neural Networks for Learning Robust Scene Representations
    Li, Zhili
    Xu, Kai
    Xie, Jiafen
    Bi, Qi
    Qin, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3685 - 3702
  • [6] Relating Simple Sentence Representations in Deep Neural Networks and the Brain
    Jat, Sharmistha
    Tang, Hao
    Talukdar, Partha
    Mitchell, Tom
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5137 - 5154
  • [7] A Deep Neural Network Classifier for Decoding Human Brain Activity Based on Magnetoencephalography
    Caliskan, Abdullah
    Yuksel, Mehmet Emin
    Badem, Hasan
    Basturk, Alper
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2017, 23 (02) : 63 - 67
  • [8] Neural representations of imagined speech revealed by frequency-tagged magnetoencephalography responses
    Lu, Lingxi
    Sheng, Jingwei
    Liu, Zhaowei
    Gao, Jia-Hong
    NEUROIMAGE, 2021, 229
  • [9] Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding
    Kato, Mugihiko
    Okumura, Toshiki
    Tsubo, Yasuhiro
    Honda, Junya
    Sugiyama, Masashi
    Touhara, Kazushige
    Okamoto, Masako
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (21)
  • [10] The spatiotemporal neural dynamics of object location representations in the human brain
    Monika Graumann
    Caterina Ciuffi
    Kshitij Dwivedi
    Gemma Roig
    Radoslaw M. Cichy
    Nature Human Behaviour, 2022, 6 : 796 - 811