Boosting kernel models for regression

被引:0
|
作者
Sun, Ping [1 ]
Yao, Xin [1 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a general boosting framework for combining multiple kernel models in the context of both classification and regression problems. Our main approach is built on the idea of gradient boosting together with a new regularization scheme and aims at reducing the cubic complexity of training kernel models. We focus mainly on using the proposed boosting framework to combine kernel ridge regression (KRR) models for regression tasks. Numerical experiments on four large-scale data sets have shown that boosting multiple small KRR models is superior to training a single large KRR model on both improving generalization performance and reducing computational requirements.
引用
收藏
页码:583 / +
页数:3
相关论文
共 50 条
  • [1] On boosting kernel regression
    Di Marzio, Marco
    Taylor, Charles C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (08) : 2483 - 2498
  • [2] L2 boosting in kernel regression
    Park, B. U.
    Lee, Y. K.
    Ha, S.
    BERNOULLI, 2009, 15 (03) : 599 - 613
  • [3] Kernel Regression Based Online Boosting Tracking
    Hu, Hongwei
    Ma, Bo
    Wu, Yuwei
    Ma, Weizhang
    Xie, Kai
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (01) : 267 - 282
  • [4] Probabilistic kernel regression models
    Jaakkola, TS
    Haussler, D
    ARTIFICIAL INTELLIGENCE AND STATISTICS 99, PROCEEDINGS, 1999, : 94 - 102
  • [5] Support vector machines, kernel logistic regression and boosting
    Zhu, J
    Hastie, R
    MULTIPLE CLASSIFIER SYSTEMS, 2002, 2364 : 16 - 26
  • [6] Boosting Functional Regression Models with FDboost
    Brockhaus, Sarah
    Ruegamer, David
    Greven, Sonja
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (10): : 1 - 50
  • [7] Boosting weak classifiers for visual tracking based on kernel regression
    Ma, Bo
    Ma, Weizhang
    MIPPR 2011: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS, 2011, 8003
  • [8] Addressing bias in bagging and boosting regression models
    Ugirumurera, Juliette
    Bensen, Erik A.
    Severino, Joseph
    Sanyal, Jibonananda
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] A new kernel regression approach for robustified L2 boosting
    Chatla, Suneel Babu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (22) : 8186 - 8209
  • [10] Color calibration based on boosting kernel partial least squares regression
    Research Institute of Peripherals, Xidian University, Xi'an 710071, China
    Yi Qi Yi Biao Xue Bao, 2008, 1 (79-83):