Unobserved confounding is a central barrier to drawing causal inferences from observational data. Several authors have recently proposed that this barrier can be overcome in the case where one attempts to infer the effects of several variables simultaneously. In this paper, we present two simple, analytical counterexamples that challenge the general claims that are central to these approaches. In addition, we show that nonparametric identification is impossible in this setting. We discuss practical implications, and suggest alternatives to the methods that have been proposed so far in this line of work: using proxy variables and shifting focus to sensitivity analysis.
机构:
Florida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USAFlorida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USA
Ruiz-Perez, Daniel
Gimon, Isabella
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USAFlorida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USA
Gimon, Isabella
Sazal, Musfiqur
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USAFlorida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USA
Sazal, Musfiqur
Mathee, Kalai
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Miami, FL USA
Florida Int Univ, Biomol Sci Inst, Miami, FL 33199 USAFlorida Int Univ, Bioinformat Res Grp BioRG, Miami, FL 33199 USA