Underwater target detection based on Faster R-CNN and adversarial occlusion network ?

被引:120
|
作者
Zeng, Lingcai [1 ]
Sun, Bing [1 ]
Zhu, Daqi [1 ]
机构
[1] Shanghai Maritime Univ, Shanghai Engn Res Ctr Intelligent Maritime Search, 1550 Haigang Ave, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater target detection; Faster R-CNN; Adversarial occlusion network;
D O I
10.1016/j.engappai.2021.104190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Underwater target detection is an important part of ocean exploration, which has important applications in military and civil fields. Since the underwater environment is complex and changeable and the sample images that can be obtained are limited, this paper proposes a method to add the adversarial occlusion network (AON) to the standard Faster R-CNN detection algorithm which called Faster R-CNN-AON network. The AON network has a competitive relationship with the Faster R-CNN detection network, which learns how to block a given target and make it difficult for the detecting network to classify the blocked target correctly. Faster R-CNN detection network and the AON network compete and learn together, and ultimately enable the detection network to obtain better robustness for underwater seafood. The joint training of Faster R-CNN and the adversarial network can effectively prevent the detection network from overfitting the generated fixed features. The experimental results in this paper show that compared with the standard Faster R-CNN network, the increase of mAP on VOC07 data set is 2.6%, and the increase of mAP on the underwater data set is 4.2%.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [2] Aerial Target Detection Based on Improved Faster R-CNN
    Feng Xiaoyu
    Mei Wei
    Hu Dashuai
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [3] Irregular Target Object Detection Based on Faster R-CNN
    Zhang, Bin
    Zhang, Yubo
    Pan, Qinghui
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [4] Fruit target detection method based on faster R-CNN
    Yin G.
    Xie Y.
    Yun J.
    Ning L.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2021, 21 (03): : 207 - 213
  • [5] Tea Bud Detection Based on Faster R-CNN Network
    Zhu H.
    Li X.
    Meng Y.
    Yang H.
    Xu Z.
    Li Z.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (05): : 217 - 224
  • [6] Ship Target Detection Algorithm Based on Improved Faster R-CNN
    Qi, Liang
    Li, Bangyu
    Chen, Liankai
    Wang, Wei
    Dong, Liang
    Jia, Xuan
    Huang, Jing
    Ge, Chengwei
    Xue, Ganmin
    Wang, Dong
    ELECTRONICS, 2019, 8 (09)
  • [7] Maritime Target Detection Of Intelligent Ship Based On Faster R-CNN
    Zou, Junjie
    Yuan, Wei
    Yu, Menghong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4113 - 4117
  • [8] Pedestrian Detection based on Faster R-CNN
    Liu S.
    Cui X.
    Li J.
    Yang H.
    Lukač N.
    International Journal of Performability Engineering, 2019, 15 (07) : 1792 - 1801
  • [9] An accurate shared bicycle detection network based on faster R-CNN
    Li, Lingqiao
    Wang, Xiangkai
    Yang, Mengyu
    Zhang, Hongwei
    IET IMAGE PROCESSING, 2023, 17 (06) : 1919 - 1930
  • [10] Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
    Xu, Xiangyang
    Zhao, Mian
    Shi, Peixin
    Ren, Ruiqi
    He, Xuhui
    Wei, Xiaojun
    Yang, Hao
    SENSORS, 2022, 22 (03)