Thresholding projection estimators in functional linear models

被引:36
|
作者
Cardot, Herve [1 ]
Johannes, Jan [2 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
[2] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
Derivatives estimation; Galerkin method; Linear inverse problem; Mean squared error of prediction; Optimal rate of convergence; Hilbert scale; Sobolev space; TIKHONOV REGULARIZATION; HILBERT SCALES; ADAPTIVE ESTIMATION; INVERSE PROBLEMS; REGRESSION; ERROR;
D O I
10.1016/j.jmva.2009.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows us to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits us to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove that these estimators are minimax and rates of convergence are given for some particular cases. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:395 / 408
页数:14
相关论文
共 50 条
  • [1] Projection Estimators for Generalized Linear Models
    Bergesio, Andrea
    Yohai, Victor J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 661 - 671
  • [2] Thresholding estimators for linear inverse problems and deconvolutions
    Kalifa, K
    Mallat, S
    ANNALS OF STATISTICS, 2003, 31 (01): : 58 - 109
  • [3] Using thresholding difference-based estimators for variable selection in partial linear models
    Luo, June
    Gerard, Patrick
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2601 - 2606
  • [4] Robust estimators in semi-functional partial linear regression models
    Boente, Graciela
    Vahnovan, Alejandra
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 59 - 84
  • [5] QML Estimators in Linear Regression Models with Functional Coefficient Autoregressive Processes
    Hu, Hongchang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [6] Linear Bayesian estimators for linear models with constraints
    Zhang, Fengyue
    Wang, Lichun
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (08) : 1635 - 1650
  • [7] PET and SPECT reconstruction with non-linear thresholding estimators.
    Kalifa, JE
    Jin, YP
    Laine, AF
    Esser, PD
    JOURNAL OF NUCLEAR MEDICINE, 2000, 41 (05) : 132P - 132P
  • [8] Spline estimators for the functional linear model
    Cardot, H
    Ferraty, F
    Sarda, P
    STATISTICA SINICA, 2003, 13 (03) : 571 - 591
  • [9] On randomizing estimators in linear regression models
    Ermakov, S
    Schwabe, R
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 305 - 314
  • [10] Robust estimators for generalized linear models
    Valdora, Marina
    Yohai, Victor J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 146 : 31 - 48