Quantum Schrodinger bridges

被引:0
|
作者
Pavon, M
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] CNR, LADSEB, I-35131 Padua, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Elaborating on M. Pavon, J. Math. Phys. 40 (1999),5565-5577, we develop a simplified version of a variational principle within Nelson stochastic mechanics that produces the von Neumann wave packet reduction after a position measurement. This stochastic control problem parallels, with a different kinematics, the problem of the Schrodinger bridge. This gives a profound meaning to what was observed by Schrodinger in 1931 concerning Schrodinger bridges: "Merkwurdige Analogien zur Quantenmechanik, die mir sehr des Hindenkens wert erscheinen".
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [1] Aligned Diffusion Schrodinger Bridges
    Somnath, Vignesh Ram
    Pariset, Matteo
    Hsieh, Ya-Ping
    Martinez, Maria Rodriguez
    Krause, Andreas
    Bunne, Charlotte
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1985 - 1995
  • [2] Diffusion Schrodinger Bridges for Bayesian Computation
    Heng, Jeremy
    De Bortoli, Valentin
    Doucet, Arnaud
    STATISTICAL SCIENCE, 2024, 39 (01) : 90 - 99
  • [3] Multi-marginal Schrodinger Bridges
    Chen, Yongxin
    Conforti, Giovanni
    Georgiou, Tryphon T.
    Ripani, Luigia
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 725 - 732
  • [4] Relaxed Schrodinger Bridges and Robust Network Routing
    Chen, Yongxin
    Georgiou, Tryphon T.
    Pavon, Michele
    Tannenbaum, Allen
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (02): : 923 - 931
  • [5] Stability of entropic optimal transport and Schrodinger bridges
    Ghosal, Promit
    Nutz, Marcel
    Bernton, Espen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (09)
  • [6] Solving Schrodinger Bridges via Maximum Likelihood
    Vargas, Francisco
    Thodoroff, Pierre
    Lamacraft, Austen
    Lawrence, Neil
    ENTROPY, 2021, 23 (09)
  • [7] Conditional Simulation Using Diffusion Schrodinger Bridges
    Shi, Yuyang
    De Bortoli, Valentin
    Deligiannidis, George
    Doucet, Arnaud
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1792 - 1802
  • [8] Martingale Schrodinger bridges and optimal semistatic portfolios
    Nutz, Marcel
    Wiesel, Johannes
    Zhao, Long
    FINANCE AND STOCHASTICS, 2023, 27 (01) : 233 - 254
  • [9] On hitting times, Bessel bridges and Schrodinger's equation
    Hernandez-Del-Valle, Gerardo
    BERNOULLI, 2013, 19 (5A) : 1559 - 1575
  • [10] Quantum derivatives and the Schrodinger equation
    Ben Adda, F
    Cresson, J
    CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1323 - 1334