Upper bound for the number of degrees of freedom for magneto-micropolar flows and turbulence

被引:5
|
作者
Sadowski, W [1 ]
机构
[1] Warsaw Univ, Inst Appl Math & Mech, Dept Math & Mech, PL-02097 Warsaw, Poland
关键词
attractor; fractal dimension; magneto-micropolar; unbounded domain; turbulence;
D O I
10.1016/S0020-7225(02)00283-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an explicit bound for the number of degrees of freedom for attractor for an incompressible, electrically conducting micropolar fluid flow in the presence of an arbitrary magnetic field. Then we use it to explain the possible mechanism of maintenance of turbulence that is different from that in N-S flows. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:789 / 800
页数:12
相关论文
共 20 条
  • [1] Degrees of Freedom of the Field as the Upper Bound for the Number of MIMO Independent Channels
    Puggelli, F.
    Chen, Yanwen
    Martini, E.
    Biscontini, B.
    Maci, S.
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 179 - 179
  • [2] Lower and upper bounds of decay to the d-dimensional magneto-micropolar equations
    Niu, Dongjuan
    Shang, Haifeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [3] Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain
    Anguiano, Maria
    Suarez-Grau, Francisco Javier
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [4] Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain
    María Anguiano
    Francisco Javier Suárez-Grau
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [5] Number of degrees of freedom of two-dimensional turbulence
    Tran, Chuong V.
    Blackbourn, Luke
    PHYSICAL REVIEW E, 2009, 79 (05)
  • [6] Global regularity of the 21/2D magneto-micropolar fluid flows with partial magnetic diffusion
    Liu, Yujun
    Li, Shan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 1267 - 1292
  • [7] A new blow up criterion for the 3D magneto-micropolar fluid flows without magnetic diffusion
    Dongxiang Chen
    Qifeng Liu
    Boundary Value Problems, 2021
  • [8] A new blow up criterion for the 3D magneto-micropolar fluid flows without magnetic diffusion
    Chen, Dongxiang
    Liu, Qifeng
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [9] Inviscid and non-resistive limit for 3D non-homogeneous magneto-micropolar flows
    Cruz, Felipe W.
    Sousa, Mirelle M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (03):
  • [10] The number of degrees of freedom of three-dimensional Navier-Stokes turbulence
    Tran, Chuong V.
    PHYSICS OF FLUIDS, 2009, 21 (12) : 1 - 7