Prediction algorithms using specialized software tools for steel industry equipment

被引:0
|
作者
Raducan, E. [1 ]
Nicolau, V [2 ]
Andrei, M. [2 ]
Petrea, G. [2 ]
Vlej, G. M. [3 ]
机构
[1] Dunarea de Jos Univ Galati, Dept Automat & Elect Engn, Galati, Romania
[2] Dunarea de Jos Univ Galati, Dept Elect & Telecommun, Galati, Romania
[3] Liberty Steel Grp, Dept Automat Digitalizat, Galati, Romania
关键词
Turbo blowers; maintenance; predictive models; machine learning; steel industry;
D O I
10.1109/siitme50350.2020.9292146
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper aims to present a model for predictive maintenance applicable in steel industry for critic equipment. This paper investigates the application of multi-step time prediction to sustain the turbo blowers (TB) equipment prognostics using software analytics algorithms which describe forecasting models, statistical approach or the formulas specifies for industrial equipment developed based by DAX formulas. This application represent a new method for realize a predictive maintenance describe as an industrial revolution characterized by smart systems and Internet-based solutions.
引用
收藏
页码:174 / 177
页数:4
相关论文
共 50 条
  • [1] Graph drawing algorithms: Using in software tools
    Sanatnama H.
    Brahimi F.
    Journal of Applied Sciences, 2010, 10 (17) : 1894 - 1901
  • [2] SOFTWARE TOOLS IN INDUSTRY
    WARD, T
    SOFTWARE ENGINEERING JOURNAL, 1986, 1 (06): : 206 - 206
  • [3] Software Fault Prediction Using ML Algorithms
    Neha, T.
    Anusha, M.
    Anusha, D.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 1040 - 1049
  • [4] Software Refactoring Prediction Using SVM and Optimization Algorithms
    Akour, Mohammed
    Alenezi, Mamdouh
    Alsghaier, Hiba
    PROCESSES, 2022, 10 (08)
  • [5] Enhancing and optimization in exisiting HVAC equipment using tools of industry 4.0
    Diaz, Feliciano Fraguela
    Montes, Julio Barreiro
    Villamor, Javier Diaz
    Fernandez, Sonia Zaragoza
    JOURNAL OF BUILDING ENGINEERING, 2025, 102
  • [6] Software Defect Prediction Analysis Using Machine Learning Algorithms
    Singh, Praman Deep
    Chug, Anuradha
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, : 775 - 781
  • [7] An overview of software tools for the photovoltaic industry
    Vashishtha, Vineet Kumar
    Yadav, Apurv
    Kumar, Ashok
    Shukla, Vinod Kumar
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 1450 - 1454
  • [8] Assessing software tools in the telecommunications industry
    Tarkiainen, M
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON ASSESSMENT OF SOFTWARE TOOLS, 1996, : 71 - 72
  • [9] Industry experience in using an abstract model to select software development tools
    Zwartjes, G.
    Geffen, J.V.
    Kourie, D.G.
    Boake, A.
    Watson, B.W.
    SAIEE Africa Research Journal, 2004, 95 (04) : 200 - 213
  • [10] SPECIALIZED INTEGRATED CIRCUITS REVOLUTIONIZE THE TELECOMMUNICATIONS EQUIPMENT INDUSTRY.
    Hurtig III, Gunnar
    Wescon Conference Record, 1980,