High-order finite-volume modeling of drift waves

被引:2
|
作者
Dorf, M. [1 ]
Dorr, M. [1 ]
Hittinger, J. [1 ]
Lee, W. [2 ]
Ghosh, D. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
Finite-volume method; High-order discretization; Incompressible flow; Gyrokinetic simulation; Drift waves; TURBULENCE;
D O I
10.1016/j.jcp.2018.07.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper discusses high-order finite-volume numerical modeling of drift waves, which is an ubiquitous phenomenon in magnetized plasmas. It is found that some standard discretization methods applied to the conservative form of the governing equations can lead to a numerical instability. A method to stabilize high-order discretization is proposed and demonstrated to work in numerical simulations performed with the fourth-order finite-volume code COGENT. As practical examples, a stable drift-wave solution with adiabatic electrons and the collisionless (universal) drift-wave instability driven by electron kinetic effects are considered. Application of the present analysis to a broader range of computational fluid dynamics systems is discussed. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [1] High-order, finite-volume methods in mapped coordinates
    Colella, P.
    Dorr, M. R.
    Hittinger, J. A. F.
    Martin, D. F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 2952 - 2976
  • [2] Curvilinear finite-volume schemes using high-order compact interpolation
    Fosso P, Arnaud
    Deniau, Hugues
    Sicot, Frederic
    Sagaut, Pierre
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (13) : 5090 - 5122
  • [3] High-order finite-volume adaptive methods on locally rectangular grids
    Colella, P.
    Dorr, M.
    Hittinger, J.
    Martin, D. F.
    McCorquodale, P.
    SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
  • [4] High-Order Finite-Volume Methods on Locally-Structured Grids
    Colella, P.
    Dorr, M.
    Hittinger, J.
    McCorquodale, P. W.
    Martin, D. F.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 207 - +
  • [5] On the properties of high-order least-squares finite-volume schemes
    Saez-Mischlich, G.
    Sierra-Ausin, J.
    Grondin, G.
    Gressier, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 457
  • [6] A high-order finite-volume method for atmospheric flows on unstructured grids
    Tsoutsanis, Panagiotis
    Drikakis, Dimitris
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2016, 4 (03) : 170 - 186
  • [7] High-order central ENO finite-volume scheme for ideal MHD
    Susanto, A.
    Ivan, L.
    De Sterck, H.
    Groth, C. P. T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 141 - 164
  • [8] HIGH-ORDER FINITE-VOLUME METHODS ON LOCALLY-STRUCTURED GRIDS
    Colella, Phillip
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (08) : 4247 - 4270
  • [9] SIMULATING WAVES IN THE UPPER SOLAR ATMOSPHERE WITH SURYA: A WELL-BALANCED HIGH-ORDER FINITE-VOLUME CODE
    Fuchs, F. G.
    McMurry, A. D.
    Mishra, S.
    Waagan, K.
    ASTROPHYSICAL JOURNAL, 2011, 732 (02):
  • [10] A framework to perform high-order deconvolution for finite-volume method on simplicial meshes
    Bernard, Manuel
    Lartigue, Ghislain
    Balarac, Guillaume
    Moureau, Vincent
    Puigt, Guillaume
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (11) : 1551 - 1583