Superlinear convergence and implicit filtering

被引:55
作者
Choi, TD
Kelley, CT
机构
[1] Intelligent Informat Syst, Durham, NC 27713 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
noisy optimization; implicit filtering; BFGS algorithm; superlinear convergence;
D O I
10.1137/S1052623499354096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show how the implicit filtering algorithm can be coupled with the BFGS quasi-Newton update to obtain a superlinearly convergent iteration if the noise in the objective function decays sufficiently rapidly as the optimal point is approached. In this way we give insight into the observations of good performance in practice of quasi-Newton methods when they are coupled with implicit filtering. We also report on numerical experiments that show how an implementation of implicit filtering that exploits these new results can improve the performance of the algorithm.
引用
收藏
页码:1149 / 1162
页数:14
相关论文
共 50 条
[1]  
[Anonymous], 1999, ITERATIVE METHODS OP
[2]  
BAILEY KR, 1996, CRSCTR9613 N CAR STA
[3]  
BAILEY KR, 1995, CRSCTR958 N CAR STAT
[4]  
BANKS HT, 1997, UNPUB LECT NOTES
[5]  
Bortz DM, 1998, PROG SYST C, V24, P77
[6]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[7]   QUASI-NEWTON METHODS AND THEIR APPLICATION TO FUNCTION MINIMISATION [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1967, 21 (99) :368-&
[8]   THE US 100-T MAGNET PROJECT [J].
CAMPBELL, LJ ;
EYSSA, Y ;
GILMORE, P ;
PERNAMBUCOWISE, P ;
PARKIN, DM ;
RICKEL, DG ;
SCHILLIG, JB ;
SCHNEIDERMUNTAU, HJ .
PHYSICA B, 1995, 211 (1-4) :52-55
[9]   NUMERICAL EXPERIENCE WITH A CLASS OF ALGORITHMS FOR NONLINEAR OPTIMIZATION USING INEXACT FUNCTION AND GRADIENT INFORMATION [J].
CARTER, RG .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :368-388
[10]   ON THE GLOBAL CONVERGENCE OF TRUST REGION ALGORITHMS USING INEXACT GRADIENT INFORMATION [J].
CARTER, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :251-265