Zero-temperature dynamics of ± J spin glasses and related models

被引:15
|
作者
Gandolfi, A
Newman, CM
Stein, DL
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
D O I
10.1007/PL00005535
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero-temperature, stochastic Ising models sigma (1) on Z(d) with (disordered) nearest-neighbor couplings independently chosen from a distribution mu on R and an initial spin configuration chosen uniformly at random. Given d, call mu type I (resp., type F) if, for every x in Z(d), sigma (t)(x) flips infinitely (resp.. only finitely) many times as t --> infinity (with probability one) - or else mixed type M. Models of type I and M exhibit a zero-temperature version of "local non-equilibration". For d = 1, all types occur and the type of any mu is easy to determine, The main result of this: paper is a proof that for d = 2, +/- J models (where mu = alpha delta (J) + (1 - alpha)delta - (J)) are type M, unlike homogeneous models: (type Zi or continuous (finite mean) mu 's (type F). We also prove that all other noncontinuous disordered systems an type M fur any d greater than or equal to 2. The +/-J proof is noteworthy in that it is much less "local" than the other (simpler) proof, Homogeneous and +/-J models for d greater than or equal to 3 remain an open problem.
引用
收藏
页码:373 / 387
页数:15
相关论文
共 50 条
  • [1] Zero-Temperature Dynamics of ±J Spin Glasses¶and Related Models
    A. Gandolfi
    C. M. Newman
    D. L. Stein
    Communications in Mathematical Physics, 2000, 214 : 373 - 387
  • [2] ZERO-TEMPERATURE SCALING FOR POTTS SPIN-GLASSES
    BANAVAR, JR
    CIEPLAK, M
    PHYSICAL REVIEW B, 1989, 39 (13): : 9633 - 9635
  • [3] Zero-Temperature Fluctuations in Short-Range Spin Glasses
    Arguin, L. -P.
    Newman, C. M.
    Stein, D. L.
    Wehr, J.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (05) : 1069 - 1078
  • [4] Zero-Temperature Fluctuations in Short-Range Spin Glasses
    L.-P. Arguin
    C. M. Newman
    D. L. Stein
    J. Wehr
    Journal of Statistical Physics, 2016, 163 : 1069 - 1078
  • [5] SPIN FLIPPING AND PERCOLATION FOR THE +/-J SPIN-GLASS AT ZERO-TEMPERATURE
    GROPENGIESSER, U
    PHYSICA A, 1995, 220 (3-4): : 239 - 244
  • [6] ZERO-TEMPERATURE SPIN DYNAMICS OF MODEL SPIN-GLASS HAMILTONIANS
    CHING, WY
    LEUNG, KM
    HUBER, DL
    PHYSICAL REVIEW LETTERS, 1977, 39 (11) : 729 - 732
  • [7] Zero-temperature critical phenomena in two-dimensional spin glasses
    Kawashima, N
    Aoki, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 : 169 - 177
  • [8] ZERO-TEMPERATURE CRITICAL-BEHAVIOR OF VECTOR SPIN-GLASSES
    MORRIS, BW
    COLBORNE, SG
    MOORE, MA
    BRAY, AJ
    CANISIUS, J
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (08): : 1157 - 1171
  • [9] A ZERO-TEMPERATURE QUANTUM MONTE CARLO ALGORITHM AND QUANTUM SPIN GLASSES
    Das, Arnab
    Chandra, Anjan K.
    Chakrabarti, Bikas K.
    COMPUTING IN SCIENCE & ENGINEERING, 2010, 12 (01) : 64 - 72
  • [10] Zero-temperature dynamics of Ising models on the triangular lattice
    Wu, CC
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 369 - 373