Stratification of acute myeloid leukemia based on gene expression profiles

被引:8
|
作者
Mano, H [1 ]
机构
[1] Jichi Med Sch, Div Funct Genom, Tochigi 3290498, Japan
关键词
DNA microarray; CD133; CD34; transcriptome;
D O I
10.1532/IJH97.04111
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acute myeloid leukemia (AML) is characterized by clonal growth of immature leukemic blasts and develops either de novo or secondarily to anticancer treatment or to other hematologic disorders. Given that the current classification of AML, which is based on blast karyotype and morphology, is not sufficiently robust to predict the prognosis of each affected individual, new stratification schemes that are of better prognostic value are needed. Global profiling of gene expression in AML blasts has the potential both to identify a small number of genes whose expression is associated with clinical outcome and to provide insight into the molecular pathogenesis of this condition. Emerging genomics tools, especially DNA microarray analysis, have been applied in attempts to isolate new molecular markers for the differential diagnosis of AML and to identify genes that contribute to leukemogenesis. Progress in bioinformatics has also yielded means with which to classify patients according to clinical parameters such as long-term prognosis. The application of such analysis to large sets of gene expression data has begun to provide the basis for a new AML classification that is more powerful with regard to prediction of prognosis. (C) 2004 The Japanese Society of Hematology.
引用
收藏
页码:389 / 394
页数:6
相关论文
共 50 条
  • [1] Stratification of Acute Myeloid Leukemia Based on Gene Expression Profiles
    Hiroyuki Mano
    International Journal of Hematology, 2004, 80 : 389 - 394
  • [2] Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia
    Teuffel, O
    Dettling, M
    Cario, G
    Stanulla, M
    Schrappe, M
    Bühlmann, P
    Niggl, FK
    Schäfer, BW
    HAEMATOLOGICA, 2004, 89 (07) : 801 - 808
  • [3] Prognostically useful gene-expression profiles in acute myeloid leukemia
    Valk, PJM
    Verhaak, RGW
    Beijen, MA
    Erpelinck, CAJ
    van Doorn-Khosrovani, SBV
    Boer, JM
    Beverloo, HB
    Moorhouse, MJ
    van der Spek, PJ
    Löwenberg, B
    Delwel, R
    NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (16): : 1617 - 1628
  • [4] Leukemia stem cell gene expression signatures contribute to acute myeloid leukemia risk stratification
    Knorr, Katherine L. B.
    Goldberg, Aaron D.
    HAEMATOLOGICA, 2020, 105 (03) : 533 - 536
  • [5] Gene expression profiles in acute myeloid leukemia with common translocations using SAGE
    Lee, S
    Chen, JJ
    Zhou, GL
    Shi, RZ
    Bouffard, GG
    Kocherginsky, M
    Ge, XJ
    Sun, M
    Jayathilaka, N
    Kim, YC
    Emmanuel, N
    Bohlander, SK
    Minden, M
    Kline, J
    Ozer, O
    Larson, RA
    LeBeau, MM
    Green, ED
    Trent, J
    Karrison, T
    Liu, PP
    Wang, SM
    Rowley, JD
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (04) : 1030 - 1035
  • [6] Gene expression profiles characterize cytogenetic subgroups in acute myeloid leukemia.
    Bullinger, L
    Dohner, K
    Frohling, S
    Dohner, H
    Pollack, J
    BLOOD, 2002, 100 (11) : 195B - 195B
  • [7] Classification of pediatric acute myeloid leukemia based on miRNA expression profiles
    Obulkasim, Askar
    Katsman-Kuipers, Jenny E.
    Verboon, Lonneke
    Sanders, Mathijs
    Touw, Ivo
    Jongen-Lavrencic, Mojca
    Pieters, Rob
    Klusmann, Jan-Henning
    Zwaan, C. Michel
    van den Heuvel-Eibrink, Marry M.
    Fornerod, Maarten
    ONCOTARGET, 2017, 8 (20) : 33078 - 33085
  • [8] Stratification of pediatric acute myeloid leukemia through cancer cell gene-expression profiling
    Gjertsen, Bjorn Tore
    EXPERT REVIEW OF ANTICANCER THERAPY, 2011, 11 (03) : 355 - 357
  • [9] HMGA2 Gene Expression Profile Improves Risk Stratification in Acute Myeloid Leukemia
    Marquis, Miriam
    Beaubois, Cyrielle
    Lavallee, Vincent-Philippe
    Abrahamowicz, Michal
    Danieli, Coraline
    Lemieux, Sebastien
    Ahmad, Imran
    Wei, Andrew
    Ting, Stephen B.
    Fleming, Shaun
    Schwarer, Anthony P.
    Grey, William
    Grimwade, David
    Hills, Robert K.
    Vyas, Paresh
    Russell, Nigel H.
    Sauvageau, Guy
    Hebert, Josee
    BLOOD, 2017, 130
  • [10] Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia
    Frederick S. Varn
    Erik H. Andrews
    Chao Cheng
    Scientific Reports, 5