Dynamical symmetries for superintegrable quantum systems

被引:4
|
作者
Calzada, J. A. [1 ]
Negro, J.
del Olmo, M. A.
机构
[1] Univ Valladolid, Dept Matemat Aplicada, Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor, Valladolid, Spain
关键词
D O I
10.1134/S1063778807030088
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the dynamical symmetries of a class of two-dimensional superintegrable systems on a 2-sphere, obtained by a procedure based on the Marsden-Weinstein reduction, by considering its shape-invariant intertwining operators. These are obtained by generalizing the techniques of factorization of one-dimensional systems. We firstly obtain a pair of noncommuting Lie algebras su(2) that originate the algebra so(4). By considering three spherical coordinate systems, we get the algebra u(3) that can be enlarged by "reflexions" to so(6). The bounded eigenstates of the Hamiltonian hierarchies are associated to the irreducible unitary representations of these dynamical algebras.
引用
收藏
页码:496 / 504
页数:9
相关论文
共 50 条
  • [1] Dynamical symmetries for superintegrable quantum systems
    J. A. Calzada
    J. Negro
    M. A. del Olmo
    Physics of Atomic Nuclei, 2007, 70 : 496 - 504
  • [2] Dynamical symmetries, bi-Hamiltonian structures, and superintegrable n=2 systems
    Rañada, MF
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 2121 - 2134
  • [3] Partial dynamical symmetries in quantum systems
    Leviatan, A.
    SYMMETRIES IN SCIENCE XV, 2012, 380
  • [4] Quantum, classical symmetries, and action-angle variables by factorization of superintegrable systems
    Şengül Kuru
    Javier Negro
    Sergio Salamanca
    The European Physical Journal Plus, 138
  • [5] Quantum, classical symmetries, and action-angle variables by factorization of superintegrable systems
    Kuru, Sengul
    Negro, Javier
    Salamanca, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [6] Quantum superintegrable Hamiltonian systems
    Calzada, JA
    Negro, J
    del Olmo, MA
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 233 - 235
  • [7] Dynamical systems and σ-symmetries
    Cicogna, G.
    Gaeta, G.
    Walcher, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (23)
  • [8] Superintegrable systems in classical and quantum mechanics
    Winternitz, P
    NEW TRENDS IN INTEGRABILITY AND PARTIAL SOLVABILITY, 2004, 132 : 281 - 297
  • [9] Quantum superintegrable systems for arbitrary spin
    Pronko, G. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13331 - 13336
  • [10] Symmetries in superintegrable deformations of oscillator and Coulomb systems: Holomorphic factorization
    Hakobyan, Tigran
    Nersessian, Armen
    Shmavonyan, Hovhannes
    PHYSICAL REVIEW D, 2017, 95 (02)