Generating network-based moving objects

被引:40
|
作者
Brinkhoff, T [1 ]
机构
[1] Univ APpl Sci, Fachhsch Oldenburg Ostfriesland Wilhelmshaven, IAPG, D-26121 Oldenburg, Germany
关键词
D O I
10.1109/SSDM.2000.869794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Benchmarking spatiotemporal database systems requires the generation of suitable datasets simulating the typical behavior of moving objects. Previous approaches do not consider that in many applications the moving objects follow a given network. In this paper, the most important properties of network-based moving objects are presented. These properties are the basis for specifying and developing a new generator for spatiotemporal data. This generator combines a real network with user-defined properties of the resulting dataset. A framework for using and promoting the generator exists.
引用
收藏
页码:253 / 255
页数:3
相关论文
共 50 条
  • [1] A framework for generating network-based moving objects
    Brinkhoff, T
    GEOINFORMATICA, 2002, 6 (02) : 153 - 180
  • [2] A Framework for Generating Network-Based Moving Objects
    Thomas Brinkhoff
    GeoInformatica, 2002, 6 : 153 - 180
  • [3] A network-based indexing method for trajectories of moving objects
    Kim, Kyoung-Sook
    Lopez, Mario A.
    Leutenegger, Scott
    Li, Ki-Joune
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4243 : 344 - 353
  • [4] Continuous Road Network-Based Skyline Query for Moving Objects
    Cai, Zhi
    Cui, Xuerui
    Su, Xing
    Guo, Limin
    Liu, Zhining
    Ding, Zhiming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7383 - 7394
  • [5] Moving objects data model based on road network
    Institute 706, The Second Academy of China Aerospace, Beijing 100854, China
    Xitong Fangzhen Xuebao, 2008, 18 (4847-4849+4853):
  • [6] Neural Network-Based Shape Analysis and Control of Continuum Objects
    Dai, Yuqiao
    Zhang, Shilin
    Cheng, Wei
    Li, Peng
    BIOMIMETICS, 2024, 9 (12)
  • [7] Strengthening Network-Based Moving Target Defense with Disposable Identifiers
    Park, Taekeun
    Kim, Keewon
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (10) : 1799 - 1802
  • [8] Nonlocal Neural Network-Based Moving Target Tracking Method
    Zhang Liguo
    Ma Zijian
    Jin Mei
    Li Yihui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [9] Empirical Assessment of Network-based Moving Target Defense Approaches
    Van Leeuwen, Brian P.
    Stout, William M. S.
    Urias, Vincent E.
    MILCOM 2016 - 2016 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2016, : 764 - 769
  • [10] Neural Network-based Model for Estimation of Solar Power Generating Capacity
    Chu, Z. J.
    Srinivasan, Dipti
    Jirutitijaroen, Panida
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 1686 - 1692