Non-Negative Integer Solutions of Some Diophantine Equations

被引:0
|
作者
Chotchaisthit, Somchit [1 ]
机构
[1] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
来源
CHIANG MAI JOURNAL OF SCIENCE | 2017年 / 44卷 / 03期
关键词
exponential diophantine equation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper. it is showen that for any non-negative integers m and n, all non-negatvie integer solutions of the Diophantine equation 43(n)2(x) + 43(y) = z(2m) are the form (3, n, 3(43)(n/2)) if m = 1 and n is even, and it has no solution in the case m not equal 1 or n is odd. It is also shown that all non-negative integer solutios of the Diophantine equation 2(x) + 2(n) 43(y) = z(2m) are the following forms: (x, y, z)={(1, 0, 2); if m = 1 and n = 1, (3 + n, 0, 3(2(n/2))); if m = 1 and n is even, (n-3, 0, 3(2(n-3/2))) and (n, 0, 2(n divided by 1/2)); if m = 1 and n >= 3 is odd, (n, 0, 2(n+1/2m)); if m > 1, 2m | (n + 1) and n >= 3 is odd, no solution; otherwise.
引用
收藏
页码:1163 / 1171
页数:9
相关论文
共 50 条