Note on equality of L-functions of elliptic curves

被引:0
|
作者
Gusic, I [1 ]
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Zagreb 10000, Croatia
关键词
Elliptic Curf; Abelian Variety; Number Field; Weil Functor; Supersingular Reduction;
D O I
10.1007/s000130050176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the equality L(A, K, s) = L(B, M, s) where A, B are elliptic curves defined over Q, and K, M Galois number fields. Using Faltings theorem on isogenies of abelian varieties, Serre theorem on supersingular reduction of elliptic curves and properties of Weil functor of restriction of scalars, the equality is described completely.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
  • [1] Note on equality of L-functions of elliptic curves
    Ivica Gusić
    Archiv der Mathematik, 1998, 70 : 137 - 141
  • [2] On the vanishing of twisted L-functions of elliptic curves
    David, C
    Fearnley, J
    Kisilevsky, H
    EXPERIMENTAL MATHEMATICS, 2004, 13 (02) : 185 - 198
  • [3] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118
  • [4] The universality of the derivatives of L-functions of elliptic curves
    Garbaliauskiene, V.
    Laurincikas, A.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 24 - 29
  • [5] L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
    Luca, Florian
    Oyono, Roger
    Yalciner, Aynur
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 509 - 519
  • [6] L-functions of elliptic curves modulo integers
    Boudreau, Felix Baril
    JOURNAL OF NUMBER THEORY, 2024, 256 : 218 - 252
  • [7] Discrete universality of the L-functions of elliptic curves
    Garbaliauskiene, V.
    Genys, J.
    Laurincikas, A.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (04) : 612 - 627
  • [8] Discrete universality of the L-functions of elliptic curves
    V. Garbaliauskienė
    J. Genys
    A. Laurinčikas
    Siberian Mathematical Journal, 2008, 49
  • [9] L-functions of elliptic curves and modular forms
    de Shalit, E
    INTRODUCTION TO THE LANGLANDS PROGRAM, 2003, : 89 - 108
  • [10] DETERMINATION OF L-FUNCTIONS OF ELLIPTIC CURVES PARAMETRIZED BY MODULAR FUNCTIONS
    SLATER, JB
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 28 (MAY) : 439 - 456