Symplectic integrator for molecular dynamics of a protein in water

被引:11
|
作者
Ishida, H [1 ]
Nagai, Y
Kidera, A
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Kyoto 606, Japan
[2] Kokushikan Univ, Ctr Informat Sci, Setagaya Ku, Tokyo 154, Japan
关键词
D O I
10.1016/S0009-2614(97)01240-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The symplectic integrator is an algorithm for solving equations of motion, preserving the volume in phase space and ensuring a stable simulation. We carried out molecular dynamics simulations of liquid water and a protein in water using several variations of symplectic integrators. It was found that a fourth-order symplectic integrator of Calvo and Sanz-Serna generated a trajectory of much higher accuracy than the conventional Verlet and Gear methods with the same requirements for CPU time. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [1] A symplectic integrator for molecular dynamics on a hypersphere
    Caillol, J-M
    CONDENSED MATTER PHYSICS, 2020, 23 (02) : 1 - 15
  • [2] How is symplectic integrator applicable to molecular dynamics?
    Okabe, T
    Yamada, H
    Goda, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (05): : 613 - 633
  • [3] An explicit and symplectic integrator for quantum-classical molecular dynamics
    Nettesheim, P
    Bornemann, FA
    Schmidt, B
    Schutte, C
    CHEMICAL PHYSICS LETTERS, 1996, 256 (06) : 581 - 588
  • [4] APPLICABILITY OF SYMPLECTIC INTEGRATOR TO CLASSICALLY UNSTABLE QUANTUM DYNAMICS
    TAKAHASHI, K
    IKEDA, K
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (11): : 8680 - 8694
  • [5] Anomaly in symplectic integrator
    Kobayashi, Hiroto
    PHYSICS LETTERS A, 2007, 371 (5-6) : 360 - 362
  • [6] Symplectic molecular dynamics integration
    Janezic, D
    MULTISCALE COMPUTATIONAL METHODS IN CHEMISTRY AND PHYSICS, 2001, 177 : 48 - 62
  • [7] New integrator for molecular dynamics simulations
    Khakimov, ZM
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 733 - 736
  • [8] A symplectic integrator for Riemannian manifolds
    Leimkuhler, B
    Patrick, GW
    JOURNAL OF NONLINEAR SCIENCE, 1996, 6 (04) : 367 - 384
  • [9] Exponentially fitted symplectic integrator
    Simos, TE
    Vigo-Aguiar, J
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [10] Spurious behavior of a symplectic integrator
    Hong, JL
    Liu, HY
    Sun, G
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) : 519 - 528