De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes

被引:23
|
作者
Liu, Jiangtao [1 ]
Zhou, Yuelong [1 ]
Luo, Changxin [1 ]
Xiang, Yun [1 ]
An, Lizhe [1 ]
机构
[1] Lanzhou Univ, Sch Life Sci, MOE Key Lab Cell Act & Stress Adaptat, Lanzhou 730000, Peoples R China
关键词
salinity stress; Achnatherum splendens; time course; differentially expressed gene; expression patterns; MOLECULAR CHARACTERIZATION; SALINITY TOLERANCE; STRESS; ARABIDOPSIS; EXPRESSION; POPLAR; WATER; MECHANISMS; RESISTANT; RESPONSES;
D O I
10.3390/genes7040012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including oxidation reduction, transcription factor activity, and ion channel transporter. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The genome sequence provides insights into salt tolerance of Achnatherum splendens (Gramineae), a constructive species of alkaline grassland
    Ren, Guangpeng
    Jiang, Yanyou
    Li, Ao
    Yin, Mou
    Li, Minjie
    Mu, Wenjie
    Wu, Ying
    Liu, Jianquan
    PLANT BIOTECHNOLOGY JOURNAL, 2022, 20 (01) : 116 - 128
  • [2] De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver
    Lin Wang
    Hongyan Du
    Tiezhu Li
    Ta-na Wuyun
    Trees, 2018, 32 : 151 - 163
  • [3] De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver
    Wang, Lin
    Du, Hongyan
    Li, Tiezhu
    Wuyun, Ta-na
    TREES-STRUCTURE AND FUNCTION, 2018, 32 (01): : 151 - 163
  • [4] De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim
    Ningmei Chen
    Jinchao Feng
    Buerbatu Song
    Shuai Tang
    Junqing He
    Yijun Zhou
    Sha Shi
    Xiaojing Xu
    Trees, 2019, 33 : 1639 - 1656
  • [5] De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim
    Chen, Ningmei
    Feng, Jinchao
    Song, Buerbatu
    Tang, Shuai
    He, Junqing
    Zhou, Yijun
    Shi, Sha
    Xu, Xiaojing
    TREES-STRUCTURE AND FUNCTION, 2019, 33 (06): : 1639 - 1656
  • [6] De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii
    Wang, Yanjie
    Dong, Chunlan
    Xue, Zeyun
    Jin, Qijiang
    Xu, Yingchun
    GENE, 2016, 576 (01) : 126 - 135
  • [7] De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis
    Li, Li
    Li, Mimi
    Qi, Xiwu
    Tang, Xingli
    Zhou, Yifeng
    PEERJ, 2018, 6
  • [8] De novo transcriptome sequencing ofRhododendron molleand identification of genes involved in the biosynthesis of secondary metabolites
    Zhou, Guo-Lin
    Zhu, Ping
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [9] De novo sequencing of Bletilla striata (Orchidaceae) transcriptome and identification of genes involved in polysaccharide biosynthesis
    Niu, Junfeng
    Zhao, Guangming
    Mi, Zeyuan
    Chen, Lijun
    Liu, Shuai
    Wang, Shiqiang
    Wang, Donghao
    Wang, Zhezhi
    GENETICS AND MOLECULAR BIOLOGY, 2020, 43 (03) : 1 - 12
  • [10] De novo transcriptome sequencing of Rhododendron molle and identification of genes involved in the biosynthesis of secondary metabolites
    Guo-Lin Zhou
    Ping Zhu
    BMC Plant Biology, 20