ON STATISTICALLY-SECURE QUANTUM HOMOMORPHIC ENCRYPTION

被引:0
|
作者
Lai, Ching-Yi [1 ]
Chung, Kai-Min [2 ]
机构
[1] Natl Chiao Tung Univ, Inst Commun Engn, Hsinchu 30010, Taiwan
[2] Acad Sinica, Inst Informat Sci, Taipei 11529, Taiwan
关键词
quantum homomorphic encryption; information-theoretical security; quantum private information retrieval; instantaneous quantum polynomial-time; PRIVATE INFORMATION-RETRIEVAL;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Homomorphic encryption is an encryption scheme that allows computations to be evaluated on encrypted inputs without knowledge of their raw messages. Recently Ouyang et al. constructed a quantum homomorphic encryption (QHE) scheme for Clifford circuits with statistical security (or information-theoretic security (IT-security)). It is desired to see whether an information-theoretically-secure (ITS) quantum FHE exists. If not, what other nontrivial class of quantum circuits can be homomorphically evaluated with IT-security? We provide a limitation for the first question that an ITS quantum FHE necessarily incurs exponential overhead. As for the second one, we propose a QHE scheme for the instantaneous quantum polynomial-time (IQP) circuits. Our QHE scheme for IQP circuits follows from the one-time pad.
引用
收藏
页码:785 / 794
页数:10
相关论文
共 50 条
  • [1] On statistically-secure quantum homomorphic encryption
    Lai, Ching-Yi (cylai0616@gmail.com), 2018, Rinton Press Inc. (18): : 9 - 10
  • [2] A Secure Multiparty Quantum Homomorphic Encryption Scheme
    Zhang, Jing-Wen
    Chen, Xiu-Bo
    Xu, Gang
    Li, Heng-Ji
    Wang, Ya-Lan
    Miao, Li-Hua
    Yang, Yi-Xian
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2835 - 2848
  • [3] The final nail in the coffin of statistically-secure obfuscator
    Volkovich, Ilya
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [4] Quantum secure direct communication based on quantum homomorphic encryption
    Huang, Xi
    Zhang, Shibin
    Chang, Yan
    Yang, Fan
    Hou, Min
    Cheng, Wen
    MODERN PHYSICS LETTERS A, 2021, 36 (37)
  • [5] Limitations on information-theoretically-secure quantum homomorphic encryption
    Yu, Li
    Perez-Delgado, Carlos A.
    Fitzsimons, Joseph F.
    PHYSICAL REVIEW A, 2014, 90 (05)
  • [6] Secure Multi-Party Quantum Summation Based on Quantum Homomorphic Encryption
    Xu, Gang
    Yun, Fan
    Chen, Xiu-Bo
    Xu, Shiyuan
    Wang, Jingzhong
    Shang, Tao
    Chang, Yan
    Dong, Mianxiong
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (01): : 531 - 541
  • [7] Secure Multiparty Logical AND Based on Quantum Homomorphic Encryption and Its Applications
    Zhang, Xinglan
    Xi, Yunxin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (09)
  • [8] A secure crossing two qubits protocol based on quantum homomorphic encryption
    Cheng, Zhen-Wen
    Chen, Xiu-Bo
    Xu, Gang
    Chang, Yan
    Yang, Yu
    Yang, Yi-Xian
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (02)
  • [9] Circular Secure Homomorphic Encryption Scheme
    Zhao X.
    Fu Y.
    Song W.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (10): : 2117 - 2124
  • [10] HEDup: Secure Deduplication with Homomorphic Encryption
    Miguel, Rodel
    Aung, Khin Mi Mi
    Mediana
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE AND STORAGE (NAS), 2015, : 215 - 223