A Multiway Semi-supervised Online Sequential Extreme Learning Machine for Facial Expression Recognition with Kinect RGB-D Images

被引:0
|
作者
Jia, Xibin [1 ]
Chen, Xinyuan [1 ]
Miao, Jun [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing, Peoples R China
关键词
Extreme learning machine; Semi-supervising; On-line sequential learning; Multi-way structure; Facial expression recognition; NETWORKS; EMOTION;
D O I
10.1007/978-3-319-63312-1_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to develop a facial expression recognition algorithm for a personal digital assistance application. Based on the Kinect RGB-D images, we propose a multiway extreme learning machine (MW-ELM) for facial expression recognition, which reduces the computing complexity significantly by processing the RGB and Depth channels separately at the input layer. Referring to our earlier work on semi-supervised online sequential extreme learning machine (SOS-ELM) that enhances the application to do the fast and incremental learning based on a few labeled samples together with some un-labeled samples of the specific user, we propose to do the parameter training with semi-supervising and on-line sequential methods for the higher hidden layer. The experiment of our proposed multiway semi-supervised online sequential extreme learning machine (MW-SOS-ELM) applying in the facial expression recognition, shows that our proposed approach achieves almost the same recognition accuracy with SOS-ELM, but reduces recognition time significantly, under the same configuration of hidden nodes. Additionally, the experiments show that our semi-supervised learning scheme reduces the requirement of labeled data sharply.
引用
收藏
页码:240 / 253
页数:14
相关论文
共 50 条
  • [1] Semi-Supervised Learning for RGB-D Object Recognition
    Cheng, Yanhua
    Zhao, Xin
    Huang, Kaiqi
    Tan, Tieniu
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2377 - 2382
  • [2] A semi-supervised online sequential extreme learning machine method
    Jia, Xibin
    Wang, Runyuan
    Liu, Junfa
    Powers, David M. W.
    NEUROCOMPUTING, 2016, 174 : 168 - 178
  • [3] Semi-supervised learning and feature evaluation for RGB-D object recognition
    Cheng, Yanhua
    Zhao, Xin
    Huang, Kaiqi
    Tan, Tieniu
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 139 : 149 - 160
  • [4] Density-based semi-supervised online sequential extreme learning machine
    Xia, Min
    Wang, Jie
    Liu, Jia
    Weng, Liguo
    Xu, Yiqing
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12): : 7747 - 7758
  • [5] Density-based semi-supervised online sequential extreme learning machine
    Min Xia
    Jie Wang
    Jia Liu
    Liguo Weng
    Yiqing Xu
    Neural Computing and Applications, 2020, 32 : 7747 - 7758
  • [6] Online RGB-D Gesture Recognition with Extreme Learning Machines
    Chen, Xi
    Koskela, Markus
    ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2013, : 467 - 474
  • [7] Online semi-supervised extreme learning machine based on manifold regularization
    Wang, Ping
    Wang, Di
    Feng, Wei
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2015, 49 (08): : 1153 - 1158
  • [8] Semi-Supervised Online Elastic Extreme Learning Machine for Data Classification
    da Silva, Carlos A. S.
    Krohling, Renato A.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [9] Lagrangian supervised and semi-supervised extreme learning machine
    Ma, Jun
    Wen, Yakun
    Yang, Liming
    APPLIED INTELLIGENCE, 2019, 49 (02) : 303 - 318
  • [10] Lagrangian supervised and semi-supervised extreme learning machine
    Jun Ma
    Yakun Wen
    Liming Yang
    Applied Intelligence, 2019, 49 : 303 - 318