Modified Spatio-Temporal Matched Filtering for Brain Responses Classification

被引:4
|
作者
Kotas, Marian P. [1 ]
Piela, Michal [1 ]
Contreras-Ortiz, Sonia H. [2 ]
机构
[1] Silesian Tech Univ, Dept Cybernet Nanotechnol & Data Proc, PL-44101 Gliwice, Poland
[2] Univ Tecnol Bolivar, Biomed Engn Program, Cartagena 150003, Colombia
关键词
Ash; Visualization; Electroencephalography; Man-machine systems; Estimation; Testing; Linear programming; Brain-computer interfaces (BCI); discrete cosine transform (DCT); generalized matched filtering (GMF); spatio-temporal filtering (STF); visual evoked potentials (EPs); COMPUTER INTERFACE; EEG; ENSEMBLE; ALGORITHM; SIGNAL; BCI;
D O I
10.1109/THMS.2022.3168421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we apply the method of spatio-temporal filtering (STF) to electroencephalographic (EEG) data processing for brain responses classification. The method operates similarly to linear discriminant analysis (LDA) but contrary to most applied classifiers, it uses the whole recorded EEG signal as a source of information instead of the precisely selected brain responses, only. This way it avoids the limitations of LDA and improves the classification accuracy. We emphasize the significance of the STF learning phase. To preclude the negative influence of super-Gaussian artifacts on accomplishment of this phase, we apply the discrete cosine transform (DCT) based method for their rejection. Later, we estimate the noise covariance matrix using all data available, and we improve the STF template construction. The further modifications are related with the constructed filters operation and consist in the changes of the STF interpretation rules. Consequently, a new tool for evoked potentials (EPs) classification has been developed. Applied to the analysis of signals stored in a publicly available database, prepared for the assessment of modern algorithms aimed in EPs detection (in the frames of the 2019 IFMBE Scientific Challenge), it allowed to achieve the second best result, very close to the best one, and significantly better than the ones achieved by other contestants of the challenge.
引用
收藏
页码:677 / 686
页数:10
相关论文
共 50 条
  • [1] Spatio-temporal matched filter adjustment for enhanced accuracy in brain responses classification
    Piela, Michal
    Kotas, Marian P.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2025, 45 (01) : 34 - 51
  • [2] Effect of finite number on the algorithms of spatio-temporal matched filtering
    Krasyuk, V.N.
    Shatalov, A.A.
    Yastrebkov, A.B.
    Radiotekhnika, 1998, (03): : 19 - 24
  • [3] Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification
    Jiang, Aimin
    Shang, Jing
    Liu, Xiaofeng
    Tang, Yibin
    Kwan, Hon Keung
    Zhu, Yanping
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (04) : 1006 - 1016
  • [4] Spatio-temporal filtering using wavelets
    M. D. Ruiz-Medina
    J. M. Angulo
    Stochastic Environmental Research and Risk Assessment, 2002, 16 : 241 - 266
  • [5] Beamforming using spatio-temporal filtering
    Liu, J
    Kim, K
    Insana, MF
    Brunke, S
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 1216 - 1219
  • [6] Spatio-temporal filtering using wavelets
    Ruiz-Medina, MD
    Angulo, JM
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2002, 16 (04) : 241 - 266
  • [7] Spatio-temporal EEG brain imaging based on reduced Kalman filtering
    Lopez, J. D.
    Espinosa, J. J.
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 64 - 67
  • [8] Classification of functional brain images with a spatio-temporal dissimilarity map
    Shinkareva, Svetlana V.
    Ombao, Hernando C.
    Sutton, Bradley P.
    Mohanty, Aprajita
    Miller, Gregory A.
    NEUROIMAGE, 2006, 33 (01) : 63 - 71
  • [9] A spatio-temporal filtering approach to motion segmentation
    Chamorro-Martínez, J
    Fdez-Valdivia, J
    Martinez-Baena, J
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 193 - 203
  • [10] Spatio-temporal Filtering for Fetal QRS Enhancement
    Kotas, M.
    Jezewski, J.
    Matonia, A.
    Kupka, T.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 389 - 392