Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis

被引:157
|
作者
Boyer, Julie L. [1 ]
Rochford, Jonathan [1 ]
Tsai, Ming-Kang [1 ]
Muckerman, James T. [1 ]
Fujita, Etsuko [1 ]
机构
[1] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
关键词
Ruthenium complexes; Redox-active ligands; Non-innocent ligands; Quinone; Oxidation; Catalysis; TRANSITION-METAL-COMPLEXES; O-BENZOQUINONE DIIMINE; ACTIVE QUINONOID LIGANDS; WATER-OXIDATION; REDOX PROPERTIES; CHARGE-DISTRIBUTION; ELECTROCHEMICAL OXIDATION; BIS(QUINONE) COMPLEXES; DIOXOLENE COMPLEXES; MOLECULAR-STRUCTURE;
D O I
10.1016/j.ccr.2009.09.006
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ruthenium complexes with the non-innocent ligands (NILs) benzoquinone, iminobenzoquinone and benzoquinonediimine and their redox derivatives exhibit intriguing electronic properties. With the proper ligand set the NIL pi* orbitals mix extensively with the ruthenium d pi orbitals resulting in delocalized electron distributions and non-integer oxidation states, and in most of these systems a particular ruthenium oxidation state dominates. This review critically examines the electronic structure of Ru-NIL systems from both an experimental and computational (DFT) perspective. The electron distribution within these complexes can be modulated by altering both the ancillary ligands and the NIL, and in a few cases the resultant electron distributions are exploited for catalysis. The Ru-NIL systems that perform alcohol oxidation and water oxidation catalysis are discussed in detail. The Tanaka catalyst, an anthracene-bridged dinuclear Ru complex, is an intriguing example of a Ru-NIL framework in catalysis. Unlike other known ruthenium water oxidation catalysts, the two Ru atoms remain low valent during the catalytic cycle according to DFT calculations, some experimental evidence, and predictions based on the behavior of the related mononuclear species. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 330
页数:22
相关论文
共 50 条
  • [1] Catalysis by Aluminum(III) Complexes of Non-Innocent Ligands
    Berben, Louise A.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (07) : 2734 - 2742
  • [2] Ruthenium complexes of non-innocent ligands: Aspects of charge transfer spectroscopy
    Lever, ABP
    Gorelsky, SI
    OPTICAL SPECTRA AND CHEMICAL BONDING IN TRANSITION METAL COMPLEXES, 2004, 107 : 77 - 114
  • [3] Metal complexes with non-innocent ligands
    Butin, KP
    Beloglazkina, YK
    Zyk, NV
    USPEKHI KHIMII, 2005, 74 (06) : 585 - 609
  • [4] Preparation, characterization and structure of ruthenium phosphine complexes containing non-innocent ligands
    Francisco, Thiago dos Santos
    de Oliveira Cruz, Dayane C.
    Batista, Alzir A.
    Ferreira, Antonio G.
    Ellena, Javier
    Moreira, Icaro de S.
    Sousa, Eduardo H. S.
    de Carvalho, Idalina M. M.
    Longhinotti, Elisane
    Diogenes, Izaura C. N.
    POLYHEDRON, 2012, 31 (01) : 104 - 109
  • [5] Electron transfer in dinuclear cobalt complexes with ''non-innocent'' bridging ligands
    Heinze, K
    Huttner, G
    Zsolnai, L
    Jacobi, A
    Schober, P
    CHEMISTRY-A EUROPEAN JOURNAL, 1997, 3 (05) : 732 - 743
  • [6] Non-Innocent Ligands: New Opportunities in Iron Catalysis
    Blanchard, Sebastien
    Derat, Etienne
    Desage-El Murr, Marine
    Fensterbank, Louis
    Malacria, Max
    Mouries-Mansuy, Virginie
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2012, (03) : 376 - 389
  • [7] Isonitriles as supporting and non-innocent ligands in metal catalysis
    Knorn, Matthias
    Lutsker, Eugen
    Reiser, Oliver
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (21) : 7730 - 7752
  • [8] Special Collection: Non-Innocent Ligands in Sustainable Catalysis
    Coburger, Peter
    Khusnutdinova, Julia
    CHEMCATCHEM, 2024, 16 (23)
  • [9] INOR 798-Ruthenium complexes with non-innocent o-iminoquinonoid ligands
    Rochford, Jonathan
    Tsai, Ming-Kang
    Muckerman, James T.
    Fujita, Etsuko
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [10] Non-innocent ligands
    Berben, Louise A.
    de Bruin, Bas
    Heyduk, Alan F.
    CHEMICAL COMMUNICATIONS, 2015, 51 (09) : 1553 - 1554