Random Records and Cuttings in Binary Search Trees

被引:22
|
作者
Holmgren, Cecilia [1 ]
机构
[1] Uppsala Univ, Inst Matemat, S-75106 Uppsala, Sweden
来源
COMBINATORICS PROBABILITY & COMPUTING | 2010年 / 19卷 / 03期
关键词
D O I
10.1017/S096354830999068X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the number of random records in a binary search tree with n vertices (or equivalently, the number of cuttings required to eliminate the tree). We show that a classical limit theorem for convergence of sums of triangular arrays to infinitely divisible distributions can be used to determine the distribution of this number. The asymptotic distribution of the (normalized) number of records or cuts is found to be weakly 1-stable.
引用
收藏
页码:391 / 424
页数:34
相关论文
共 50 条
  • [1] Random records and cuttings in complete binary trees
    Janson, S
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 241 - 253
  • [2] Patterns in random binary search trees
    Flajolet, P
    Gourdon, X
    Martinez, C
    RANDOM STRUCTURES & ALGORITHMS, 1997, 11 (03) : 223 - 244
  • [3] Distances and finger search in random binary search trees
    Devroye, L
    Neininger, R
    SIAM JOURNAL ON COMPUTING, 2004, 33 (03) : 647 - 658
  • [4] Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees
    Michael Fuchs
    Hsien-Kuei Hwang
    Ralph Neininger
    Algorithmica, 2006, 46 : 367 - 407
  • [5] Profiles of random trees: Correlation and width of random recursive trees and binary search trees
    Drmota, M
    Hwang, HK
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 321 - 341
  • [6] Profiles of random trees: Limit theorems for random recursive trees and binary search trees
    Fuchs, Michael
    Hwang, Hsien-Kuei
    Neininger, Ralph
    ALGORITHMICA, 2006, 46 (3-4) : 367 - 407
  • [7] ON THE GENERATION OF RANDOM BINARY SEARCH-TREES
    DEVROYE, L
    ROBSON, JM
    SIAM JOURNAL ON COMPUTING, 1995, 24 (06) : 1141 - 1156
  • [8] On Weighted Depths in Random Binary Search Trees
    Aguech, Rafik
    Amri, Anis
    Sulzbach, Henning
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 1929 - 1951
  • [9] Distribution of distances in random binary search trees
    Mahmoud, HM
    Neininger, R
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (01): : 253 - 276
  • [10] Maximal clades in random binary search trees
    Janson, Svante
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):