Five-dimensional paracontact Lie algebras

被引:3
|
作者
Calvaruso, Giovanni [1 ]
Perrone, Antonella [1 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Paracontact metric structures; Contact Lie algebras; K-paracontact structures; ParaSasakian structures; GEOMETRY; CONTACT; MANIFOLDS;
D O I
10.1016/j.difgeo.2016.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider odd-dimensional Lie algebras g equipped with a paracontact metric structure. In the case of non-trivial center, paracontact Lie algebras are obtained as central extensions of almost paraKahler Lie algebras. As such, they are necessarily K-paracontact, and a complete classification is given in dimension five, also specifying the paraSasakian examples. Thus, paracontact, not K-paracontact structures can only occur among Lie algebras with trivial center. Starting from the classification of five-dimensional contact Lie algebras given in [17], examples with trivial center, both K-paracontact and not, are explicitly discussed and classified. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 50 条
  • [1] ON PARASASAKIAN STRUCTURES ON FIVE-DIMENSIONAL LIE ALGEBRAS
    Smolentsev, N. K.
    Shagabudinova, I. Y.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 37 - 52
  • [2] Six-Dimensional Lie Algebras with a Five-Dimensional Nilradical
    Shabanskaya, Anastasia
    Thompson, Gerard
    JOURNAL OF LIE THEORY, 2013, 23 (02) : 313 - 355
  • [3] Five-dimensional K-contact Lie algebras
    Giovanni Calvaruso
    Anna Fino
    Monatshefte für Mathematik, 2012, 167 : 35 - 59
  • [4] Five-dimensional K-contact Lie algebras
    Calvaruso, Giovanni
    Fino, Anna
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (01): : 35 - 59
  • [5] Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras
    Almusawa, Hassan
    Ghanam, Ryad
    Thompson, Gerard
    SYMMETRY-BASEL, 2019, 11 (11):
  • [6] Decomposable Five-Dimensional Lie Algebras in the Problem on Holomorphic Homogeneity in ℂ3
    Atanov A.V.
    Loboda A.V.
    Journal of Mathematical Sciences, 2022, 268 (1) : 84 - 113
  • [7] On the Symmetries of Five-Dimensional Solvable Lie Groups
    Mostefaoui, Assia
    Belarbi, Lakehal
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 155 - 169
  • [8] Classification of Five-Dimensional Symmetric Leibniz Algebras
    Choriyeva, Iroda
    Khudoyberdiyev, Abror
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (03)
  • [9] Some five-dimensional Artin-Schelter regular algebras obtained by deforming a Lie algebra
    Li, Jun
    Wang, Xin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (04)
  • [10] Five-dimensional ρ-nilpotent restricted Lie algebras over algebraically closed fields of characteristic ρ > 3
    Maletesta, Nicola
    Siciliano, Salvatore
    JOURNAL OF ALGEBRA, 2023, 634 : 755 - 789