State feedback in linear control theory

被引:5
|
作者
Mondié, S
Zagalak, P
Kucera, V
机构
[1] IPN, CINVESTAV, Dept Automat Control, Mexico City 07300, DF, Mexico
[2] Acad Sci Czech Republic, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
[3] Czech Tech Univ, Fac Elect Engn, Trnka Lab Automat Control, CR-16627 Prague, Czech Republic
关键词
state feedback; linear systems; system invariants; matrix pencil;
D O I
10.1016/S0024-3795(00)00153-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The role of system invariants in solutions of classical control problems when regular state feedback is used is reviewed. The structural modifications that arise when these problems are extended to the case of non-regular state feedback are presented. An interpretation of state feedback problems in terms of matrix pencils completion is also discussed. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:177 / 192
页数:16
相关论文
共 50 条
  • [1] LINEAR STATE-FEEDBACK CONTROL OF MANIPULATORS
    GOLLA, DF
    GARG, SC
    HUGHES, PC
    MECHANISM AND MACHINE THEORY, 1981, 16 (02) : 93 - 103
  • [2] Simultaneous control of linear systems by state feedback
    Saadatjoo, F.
    Derhami, Vali
    Karbassi, S. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 154 - 160
  • [3] CONTROL OF A COLLECTION OF LINEAR-SYSTEMS BY LINEAR STATE-FEEDBACK CONTROL
    HOWITT, GD
    LUUS, R
    INTERNATIONAL JOURNAL OF CONTROL, 1993, 58 (01) : 79 - 96
  • [5] State Feedback Control of Linear Systems - a Renewed Approach
    Roppenecker, Guenter
    AT-AUTOMATISIERUNGSTECHNIK, 2009, 57 (10) : 491 - 498
  • [6] Reliable state feedback control synthesis for uncertain linear
    Yang, GH
    Wang, JL
    Soh, YC
    Lou, KY
    ASIAN JOURNAL OF CONTROL, 2003, 5 (02) : 301 - 308
  • [7] Discretization and state feedback control for uncertain linear systems-A new approach considering linear multistep method theory
    Keles, Natalia Augusto
    Frezzatto, Luciano
    Mendes, Eduardo Mazoni Andrade Marcal
    Campos, Victor Costa da Silva
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (01): : 489 - 500
  • [8] Link state feedback control based on linear estimation
    Wang, YH
    Zhu, HL
    Ma, ZX
    Cao, ZG
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 272 - 275
  • [9] Linear state feedback control for a new chaotic system
    Li, RH
    Xu, W
    Li, S
    ACTA PHYSICA SINICA, 2006, 55 (02) : 598 - 604
  • [10] Global control of chaotic systems based on linear state feedback
    Sun Chang-Chun
    Fang Bo
    Huang Wen-Hu
    ACTA PHYSICA SINICA, 2011, 60 (11)