Changing Mobile Data Analysis through Deep Learning

被引:7
|
作者
Kasnesis, Panagiotis [1 ]
Patrikakis, Charalampos Z. [3 ]
Venieris, Iakovos S. [2 ]
机构
[1] Natl Tech Univ Athens, Dept Elect & Comp Engn, Athens, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens, Greece
[3] Piraeus Univ Appl Sci, Dept Elect Engn, Aigaleo, Greece
关键词
accelerometer data; big data; context-awareness; data analytics; deep learning; human activity recognition; mobile data analysis;
D O I
10.1109/MITP.2017.52
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors present common mobile context-aware applications and reference current mobile data analysis practices and approaches. They propose using deep learning to analyze sensor data from mobile devices and discuss open issues related to this approach.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [1] Investigating Causality in Mobile Health Data through Deep Learning Models
    Ma, Eun-Yeol
    Kim, Heeyoung
    Lee, Uichin
    2023 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP, 2023, : 375 - 377
  • [2] Mobile Sensing Through Deep Learning
    Zeng, Xiao
    MOBISYS'17 PHD FORUM: PROCEEDINGS OF THE 2017 WORKSHOP ON MOBISYS 2017 PH.D. FORUM, 2017, : 5 - 6
  • [3] Learning Mobile Manipulation through Deep Reinforcement Learning
    Wang, Cong
    Zhang, Qifeng
    Tian, Qiyan
    Li, Shuo
    Wang, Xiaohui
    Lane, David
    Petillot, Yvan
    Wang, Sen
    SENSORS, 2020, 20 (03)
  • [4] Deep Learning for Text Data on Mobile Devices
    Sido, Jakub
    Konopik, Miloslav
    2019 24TH INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2019, : 147 - 150
  • [5] Towards Activity Recognition through Multidimensional Mobile Data Fusion with a Smartphone and Deep Learning
    Cao, Junkuo
    Lin, Mingcai
    Wang, Han
    Fang, Jiacheng
    Xu, Yueshen
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [6] A Mobile Application for Plant Recognition through Deep Learning
    Gao, Min
    Lin, Lang
    Sinnott, Richard O.
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 29 - 38
  • [7] Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning
    Honerkamp, Daniel
    Welschehold, Tim
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 6289 - 6296
  • [8] Changing the Unpredictable Nature of Internal Tides Through Deep Learning
    Li, Bingtian
    Wang, Yufei
    Wei, Zexun
    Pan, Haidong
    Xu, Tengfei
    Lv, Xianqing
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (08)
  • [9] Deep mining of mobile learning data based on multi-scale clustering analysis
    Ji, Yuxin
    INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG LEARNING, 2023, 33 (4-5) : 456 - 467
  • [10] Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
    Kanjo, Eiman
    Younis, Eman M. G.
    Ang, Chee Siang
    INFORMATION FUSION, 2019, 49 : 46 - 56