Impact of ocean mixed-layer depth initialization on the simulation of tropical cyclones over the Bay of Bengal using the WRF-ARW model

被引:27
|
作者
Yesubabu, Viswanadhapalli [1 ]
Kattamanchi, Vijaya Kumari [2 ]
Vissa, Naresh Krishna [3 ]
Dasari, Hari Prasad [4 ]
Sarangam, Vijaya Bhaskara Rao [2 ]
机构
[1] Natl Atmospher Res Lab, Weather & Climate Res Grp, Gadanki 517112, Andhra Pradesh, India
[2] SV Univ, Dept Phys, Tirupati, Andhra Pradesh, India
[3] Natl Inst Technol Rourkela, Dept Earth & Atmospher Sci, Rourkela, India
[4] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal, Saudi Arabia
关键词
mixed-layer depth; storm-induced sea-surface cooling; tropical cyclone; WRF-OML couple model; NUMERICAL-SIMULATION; DATA ASSIMILATION; INTENSITY; INTENSIFICATION; IMPLEMENTATION; PREDICTIONS; SENSITIVITY; SYSTEM; NARGIS; STORM;
D O I
10.1002/met.1862
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The sensitivity of the simulated tropical cyclone (TC) intensity and tracks to the different ocean mixed-layer depth (MLD) initializations is studied using coupled weather research and forecasting (WRF) and ocean mixed-layer (OML) models. Four sets of numerical experiments are conducted for two TCs formed during the pre- and post-monsoon. In the control run (CONTROL), the WRF model is initialized without coupling. In the second experiment, the WRF-OML model is initialized by prescribing the MLD as a constant depth of 50 m (MLD-CONST). In the third experiment, the spatial varying MLD obtained from the formulation of depth of the isothermal layer (MLD-TEMP) is used. For the fourth experiment (MLD-DENS), the model is initialized with the density-based MLD obtained from ARMOR-3D data. The results indicate that the CONTROL exhibits an early intensification phase with a faster translation movement, leading to early landfall and the production of large track deviations. The coupled OML simulations captured the deepening phase close to the observed estimates, resulting in the reduction of errors in both the vector and along the tracks of the storm. The initialization of the different estimates of the MLD in the WRF-OML shows that the TC intensity and translation speed are sensitive to the initial representation of the MLD for the post-monsoon storm. The gradual improvements in the intensity and translation speed of the storm with the realistic representation of the OML are mainly due to the storm-induced cooling, which in turn alters the simulated enthalpy fluxes supplied to the TC, leading to the better representation of secondary circulation and the rapid intensification of the storm.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Sensitivity of physical schemes on simulation of severe cyclones over Bay of Bengal using WRF-ARW model
    Shenoy, Meenakshi
    Raju, P. V. S.
    Prasad, V. S.
    Prasad, K. B. R. R. Hari
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 149 (3-4) : 993 - 1007
  • [2] Sensitivity of physical schemes on simulation of severe cyclones over Bay of Bengal using WRF-ARW model
    Meenakshi Shenoy
    P. V. S. Raju
    V. S. Prasad
    K. B. R. R. Hari Prasad
    Theoretical and Applied Climatology, 2022, 149 : 993 - 1007
  • [3] Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean
    Osuri, Krishna K.
    Mohanty, U. C.
    Routray, A.
    Kulkarni, Makarand A.
    Mohapatra, M.
    NATURAL HAZARDS, 2012, 63 (03) : 1337 - 1359
  • [4] Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean
    Krishna K. Osuri
    U. C. Mohanty
    A. Routray
    Makarand A. Kulkarni
    M. Mohapatra
    Natural Hazards, 2012, 63 : 1337 - 1359
  • [5] The impact of assimilating MeghaTropiques SAPHIR radiances in the simulation of tropical cyclones over the Bay of Bengal using the WRF model
    Dhanya, M.
    Gopalakrishnan, Deepak
    Chandrasekar, A.
    Singh, Sanjeev Kumar
    Prasad, V. S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (13) : 3086 - 3103
  • [6] Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model
    Singh, K. S.
    Bhaskaran, Prasad K.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2017, 165 : 10 - 24
  • [7] Impact of Vortex Initialization in Prediction of Tropical Cyclones over Bay of Bengal with NCUM Model
    Routray, Ashish
    Singh, Vivek
    Gupta, Ankur
    Dutta, Devajyoti
    George, John P.
    MARINE GEODESY, 2019, 42 (02) : 201 - 226
  • [8] Simulation of Bay of Bengal Tropical Cyclones with WRF Model: Impact of Initial and Boundary Conditions
    Mohanty, U. C.
    Osuri, Krishna K.
    Routray, A.
    Mohapatra, M.
    Pattanayak, Sujata
    MARINE GEODESY, 2010, 33 (04) : 294 - 314
  • [9] Performance of land surface schemes on simulation of land falling tropical cyclones over Bay of Bengal using ARW model
    Johari, Pushpendra
    Kumar, Sushil
    Pattanayak, Sujata
    Sahu, Dipak Kumar
    Routray, A.
    MAUSAM, 2023, 74 (04): : 1155 - 1172
  • [10] Simulation of the electrification of a tropical cyclone using the WRF-ARW model: An idealized case
    Liangtao Xu
    Yijun Zhang
    Fei Wang
    Dong Zheng
    Journal of Meteorological Research, 2014, 28 : 453 - 468