Background and Purpose - We sought to describe the dynamic changes in the cerebrovascular system after traumatic brain injury by transfer function estimation and coherence. Methods - In 42 healthy volunteers ( mean +/- SD age, 37 +/- 17 years; range, 17 to 65 years), spontaneous fluctuations of middle cerebral artery blood flow velocity and of finger blood pressure ( BP) were simultaneously recorded over a period of 10 minutes under normocapnic and hypocapnic conditions to generate normative spectra of coherence, phase shift, and gain over the frequency range of 0 to 0.25 Hz. Similar recordings were performed in 24 patients with severe traumatic brain injury ( Glasgow Coma Scale score less than or equal to8; mean +/- SD age, 50 +/- 20 years) serially on days 1, 3, 5, and 8 after trauma. Cranial perfusion pressure was kept at >70 mm Hg. Each blood flow velocity/BP recording was related to the presence or absence of middle cerebral artery territory brain parenchyma lesions on cranial CT performed within a close time frame. Results - In controls, hypocapnia decreased coherence (0.0 to 0.20 Hz), increased phase shift ( 0.0 to 0.17 Hz), and decreased gain in the frequency range of 0.0 to 0.11 Hz but increased gain at frequencies of 0.20 to 0.25 Hz ( P < 0.01 for all frequency ranges reported). In patients with traumatic brain injury, 102 investigations were possible. Compared with controls, coherence was increased in the frequency range <0.03 Hz and between 0.13 and 0.25 Hz in both normocapnia and hypocapnia, irrespective of the CT findings. Gain was unchanged in normocapnia and in the absence of a CT lesion. Gain was decreased in hypocapnia at frequencies >0.12 Hz irrespective of the presence/absence of a CT lesion. Phase shift decreased rapidly between 0.06 and 0.13 Hz under hypocapnic conditions and under normocapnic conditions in the presence of a CT lesion ( P < 0.01). Conclusions - Use of spontaneous fluctuations of blood flow velocity and BP to assess the cerebrovascular system dynamically requires consideration of the PaCO2 level. In different conditions, including severe traumatic brain injury, the cerebrovascular system behaves linearly only in parts of the investigated frequency range.