A class of automorphic functions associated with quadratic orbits of PSL(2,Z) in P1(R)

被引:0
|
作者
Unterberger, A [1 ]
机构
[1] Univ Reims, UPRESA 6056, F-51687 Reims 2, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 04期
关键词
D O I
10.1016/S0764-4442(00)01633-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quadratic orbit of PSL(2, Z) in P-1(R) is characterized by a quadratic irrational rho, the conjugate of which in the field Q(rho) is denoted as <(rho)over bar>. Let Sigma be the union of the locally finite set of PSL(2, Z)-transforms of the straight line (in the sense of hyperbolic geometry) from rho to <(rho)over bar> For every nu is an element of C such that Re nu < -1, we construct a certain continuous automorphic function f(nu), C-infinity in the complementary of Sigma, a solution of the equation (Delta - 1-nu(2)/4) f(nu) = 0 in this open set. The function S, can be continued as a meromorphic function of nu in the whole complex plane, with poles at the points i lambda(k) with (1 + lambda k(2))/4 in the discrete spectrum of the modular Laplacian, and at zeros of the zeta function: one expresses f(nu) in terms of the automorphic Green function. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [1] ZEROS OF ZETA-FUNCTIONS AND L-FUNCTIONS OF IMAGINARY QUADRATIC FIELDS AND EIGENVALUES OF PSL(2,Z)-AUTOMORPHIC LAPLACIAN
    VENKOV, AB
    DOKLADY AKADEMII NAUK SSSR, 1980, 250 (03): : 528 - 531
  • [2] Icosahedral Group and Classification of PSL(2,Z)-Orbits of Real Quadratic Fields
    Chen, Tianlan
    Bari, Muhammad Nadeem
    Malik, Muhammad Aslam
    Afzal Siddiqui, Hafiz Muhammad
    Liu, Jia-Bao
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [3] A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(Z)
    Spiegelhalter, Paul
    Zaharescu, Alexandru
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 601 - 610
  • [4] A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(Z), II
    Spiegelhalter, Paul
    Zaharescu, Alexandru
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 443 - 455
  • [5] ON THE NUMBER OF ORBITS ARISING FROM THE ACTION OF PSL(2, Z) ON IMAGINARY QUADRATIC NUMBER FIELDS
    Deajim, Abdulaziz
    Aslam, Muhammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 61 - 74
  • [6] Smallest representatives of SL(2, Z)-orbits of binary forms and endomorphisms of P1
    Hutz, Benjamin
    Stoll, Michael
    ACTA ARITHMETICA, 2019, 189 (03) : 283 - 308
  • [7] The Dehn function of PSL2(Z[1/p])
    Taback, J
    GEOMETRIAE DEDICATA, 2003, 102 (01) : 179 - 195
  • [8] The Dehn Function of PSL2(Z[1/p])
    Jennifer Taback
    Geometriae Dedicata, 2003, 102 : 179 - 195
  • [9] BOUNDARY FUNCTIONS OF H(P1,...,PN)(R1...RN)
    PILIKA, P
    DOKLADY AKADEMII NAUK SSSR, 1959, 128 (04): : 677 - 679
  • [10] Quasi-isometric rigidity for PSL2(Z[1/p])
    Taback, J
    DUKE MATHEMATICAL JOURNAL, 2000, 101 (02) : 335 - 357