Finite element approximation of spectral problems with Neumann boundary conditions on curved domains

被引:0
|
作者
Hernández, E [1 ]
Rodríguez, R [1 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
finite element spectral approximation; curved domains;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the finite element approximation of the spectral problem for the Laplace equation with Neumann boundary conditions on a curved nonconvex domain Omega. Convergence and optimal order error estimates are proved for standard piecewise linear continuous elements on a discrete polygonal domain Omega(h) not subset of Omega in the framework of the abstract spectral approximation theory.
引用
收藏
页码:1099 / 1115
页数:17
相关论文
共 50 条