Statistical laws in chaotic dynamics of multiple stars

被引:0
|
作者
Rubinov, A [1 ]
Petrova, A [1 ]
Orlov, V [1 ]
机构
[1] St Petersburg State Univ, Sobolev Astron Inst, St Petersburg 198504, Russia
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Statistical analysis of the modeled stellar systems dynamical evolution is performed. The initial global parameters (amount of stars, system size, virial ratio, mass spectrum) are varied. Final state distribution, final binaries and stable triples orbital elements are analysed. It is shown that the probability of the stable triple formation is rather high (about 10-15%). The eccentricity distribution of the final binaries satisfies the f(e) = 2e law. The hierarchy in the stable triple systems is rather strong (the mean ratio of the outer and inner binary sernimajor axes is about 20 : 1). In stable triples the eccentricities of internal binaries are in average greater than the ones of external binaries ((e(in)) over bar approximate to 0.7, (e(ex)) over bar approximate to 0.5). Stable triples with prograde motions are preferable.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [1] Chaotic dynamics and the origin of statistical laws
    Zaslavsky, GM
    PHYSICS TODAY, 1999, 52 (08) : 39 - 45
  • [2] STATISTICAL DYNAMICS OF CHAOTIC FLOWS
    MORI, H
    FUJISAKA, H
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (06): : 1931 - 1944
  • [3] Statistical Stability in Chaotic Dynamics
    Alves, J. F.
    Soufi, M.
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 7 - 24
  • [4] DYNAMICS AND FORECASTING OF TWO CHAOTIC STARS
    Binder, P. -M.
    Crosson, I. J.
    Cadmus, R. R., Jr.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 685 (02) : L145 - L148
  • [5] Statistical laws for computational collapse of discretized chaotic mappings
    Diamond, P
    Pokrovskii, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A): : 2389 - 2399
  • [6] Dynamics of multiple stars
    Rubinov, AV
    Petrova, AV
    Orlov, VV
    PROCEEDINGS OF THE XIII NATIONAL CONFERENCE OF YUGOSLAV ASTRONOMERS, 2003, (75): : 17 - 25
  • [7] Spectrum and statistical properties of chaotic dynamics
    Baladi, V
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 2001, 201 : 203 - 223
  • [8] Dynamics of multiple stars: Observations
    Tokovinin, A.
    MASSIVE STARS IN INTERACTING BINARIES, 2007, 367 : 615 - +
  • [9] Chaotic dynamics in piezoelectrically active statistical mixtures
    Chernobabov, A. I.
    Turik, A. V.
    Tolokol'nikov, E. A.
    Rodinin, M. Yu
    Temirchev, G. I.
    PHYSICS OF THE SOLID STATE, 2009, 51 (07) : 1507 - 1509
  • [10] Chaotic dynamics in piezoelectrically active statistical mixtures
    A. I. Chernobabov
    A. V. Turik
    E. A. Tolokol’nikov
    M. Yu. Rodinin
    G. I. Temirchev
    Physics of the Solid State, 2009, 51 : 1507 - 1509