Torus quotients of Richardson varieties in the Grassmannian

被引:5
|
作者
Bakshi, Sarjick [1 ]
Kannan, S. Senthamarai [1 ]
Venkata, Subrahmanyam K. [1 ]
机构
[1] Chennai Math Inst, Plot H1,SIPCOT IT Pk, Chennai 603103, Tamil Nadu, India
关键词
GIT; projective normality; Richardson varieties; semistable points; HOMOGENEOUS SPACES; DECOMPOSITION;
D O I
10.1080/00927872.2019.1668005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the GIT quotient of the minimal Schubert variety in the Grassmannian admitting semistable points for the action of maximal torus T, with respect to the T-linearized line bundle and show that this is smooth when When n = 7 and r = 3 we study the GIT quotients of all Richardson varieties in the minimal Schubert variety. This builds on work by Kumar [21], Kannan and Sardar [18], Kannan and Pattanayak [17], and Kannan et al. [16]. It is known that the GIT quotient of is projectively normal. We give a different combinatorial proof.
引用
收藏
页码:891 / 914
页数:24
相关论文
共 50 条
  • [1] Smooth torus quotients of Richardson varieties in the Grassmannian
    Bakshi, Sarjick
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (05)
  • [2] Torus quotients of Richardson varieties
    Kannan, S. S.
    Paramasamy, K.
    Pattanayak, S. K.
    Upadhyay, Shyamashree
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 254 - 261
  • [3] Smooth torus quotients of Schubert varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [4] Torus quotients of Schubert varieties in the Grassmannian G2,n
    Kannan, S. Senthamarai
    Nayek, Arpita
    Saha, Pinakinath
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 273 - 293
  • [5] Torus quotients of Richardson varieties in Gr,qr+1
    Kannan, S. Senthamarai
    Nayek, Arpita
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02):
  • [6] Richardson varieties in the Grassmannian
    Kreiman, V
    Lakshmibai, V
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 573 - 597
  • [7] On the Torus quotients of Schubert varieties
    Bonala, Narasimha Chary
    Pattanayak, Santosha Kumar
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)
  • [8] Torus quotients of some flag varieties
    Dake, Somnath
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02):
  • [9] Quotients of flag varieties by a maximal torus
    Elisabetta Strickland
    Mathematische Zeitschrift, 2000, 234 : 1 - 7
  • [10] Quotients of flag varieties by a maximal torus
    Strickland, E
    MATHEMATISCHE ZEITSCHRIFT, 2000, 234 (01) : 1 - 7