Deep Clustering with Spherical Distance in Latent Space

被引:0
|
作者
Tran, Bach [1 ]
Le Thi, Hoai An [1 ]
机构
[1] Univ Lorraine, Comp Sci & Applicat Dept, LGIPM, Metz, France
关键词
Clustering; Deep learning; Auto-encoder; Spherical distance;
D O I
10.1007/978-3-030-38364-0_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the problem of deep joint-clustering using auto-encoder. For this task, most algorithms solve a multi-objective optimization problem, where it is then transformed into a sing-objective problem by linear scalarization techniques. However, it introduces the scaling problem in latent space in a class of algorithms. We propose an extension to solve this problem by using scale invariance distance functions. The advantage of this extension is demonstrated for a particular case of joint-clustering with MSSC (minimizing sum-of-squares clustering). Numerical experiments on several benchmark datasets illustrate the superiority of our extension over state-of-the-art algorithms with respect to clustering accuracy.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 50 条
  • [1] Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings
    Yang, Lin
    Fan, Wentao
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 6303 - 6312
  • [2] CLUSTERING BY DIRECTLY DISENTANGLING LATENT SPACE
    Ding, Fei
    Yang, Yin
    Luo, Feng
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 341 - 345
  • [3] Latent Space Sparse Subspace Clustering
    Patel, Vishal M.
    Hien Van Nguyen
    Vidal, Rene
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 225 - 232
  • [4] Latent Distribution Preserving Deep Subspace Clustering
    Zhou, Lei
    Bai, Xiao
    Wang, Dong
    Liu, Xianglong
    Zhou, Jun
    Hancock, Edwin
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4440 - 4446
  • [5] The Teichmuller distance on the space of spherical CR structures
    Wang Wei
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1523 - 1538
  • [6] Classical Planning in Deep Latent Space
    Asai, Masataro
    Kajino, Hiroshi
    Fukunaga, Alex
    Muise, Christian
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 1599 - 1686
  • [7] Classical Planning in Deep Latent Space
    Asai M.
    Kajino H.
    Fukunaga A.
    Muise C.
    Journal of Artificial Intelligence Research, 2022, 74 : 1599 - 1686
  • [8] Multi-View Clustering in Latent Embedding Space
    Chen, Man-Sheng
    Huang, Ling
    Wang, Chang-Dong
    Huang, Dong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3513 - 3520
  • [9] DASC: Learning discriminative latent space for video clustering
    Lin, Jiaxin
    Gao, Xizhan
    Zhang, Zhihan
    Deng, Haotian
    NEUROCOMPUTING, 2025, 637
  • [10] A Dynamic Latent-Space Model for Asset Clustering
    Casarin, Roberto
    Peruzzi, Antonio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024, 28 (02): : 379 - 402