Memristor-based Energy-Efficient Neuromorphic Computing

被引:0
|
作者
Tang, Jianshi [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
关键词
D O I
10.1109/ICICDT56182.2022.9933132
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the past decade, the rapid growth of artificial intelligence demands for intelligent computing chips. However, the continuous increase of computing power and energy efficiency for conventional chips face critical challenges from the slowdown of Moore's law scaling and also their von Neumann architecture. Inspired by human brain, computing-in- memory with emerging devices, such as memristors, has emerged as a promising neuromorphic paradigm to break the von Neumann bottleneck. Tremendous progress has been recently made in the developments of oxide-based memristors as neuromorphic devices, such as artificial synapses, neurons as well as dendrites. In this talk, I will first discuss the hardware challenges for artificial intelligence and then introduce the recent progress on the memristor-based computing-in-memory for neuromorphic computing, from material and device developments to process integration and chip demonstrations. Recent works on memristor-based signal processing for dendritic computing and reservoir computing will also be discussed. As the end, I will highlight future research directions and challenges for memristor-based neuromorphic computing.
引用
收藏
页码:XIX / XIX
页数:1
相关论文
共 50 条
  • [1] An Efficient Programming Framework for Memristor-based Neuromorphic Computing
    Li Zhang, Grace
    Li, Bing
    Huang, Xing
    Shen, Chen
    Zhang, Shuhang
    Burcea, Florin
    Graeb, Helmut
    Ho, Tsung-Yi
    Li, Hai
    Schlichtmann, Ulf
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1068 - 1073
  • [2] Memristor-based Synapses and Neurons for Neuromorphic Computing
    Zheng, Le
    Shin, Sangho
    Kang, Sung-Mo Steve
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1150 - 1153
  • [3] Memristor-Based Neuromorphic Circuits and Unconventional Computing
    Erokhin, Victor
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1874 - 1874
  • [4] Aging Aware Retraining for Memristor-based Neuromorphic Computing
    Ye, Wenwen
    Li Zhang, Grace
    Li, Bing
    Schlichtmann, Ulf
    Zhuo, Cheng
    Yin, Xunzhao
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3294 - 3298
  • [5] A Heterogeneous Computing System with Memristor-Based Neuromorphic Accelerators
    Liu, Xiaoxiao
    Mao, Mengjie
    Li, Hai
    Chen, Yiran
    Jiang, Hao
    Yang, J. Joshua
    Wu, Qing
    Barnell, Mark
    2014 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2014,
  • [6] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL PROCESSING LETTERS, 2015, 41 (02) : 159 - 167
  • [7] Thermal Optimization for Memristor-Based Hybrid Neuromorphic Computing Systems
    Wu, Chi-Ruo
    Wen, Wei
    Ho, Tsung-Yi
    Chen, Yiran
    2016 21ST ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2016, : 274 - 279
  • [8] MNSIM: Simulation Platform for Memristor-Based Neuromorphic Computing System
    Xia, Lixue
    Li, Boxun
    Tang, Tianqi
    Gu, Peng
    Chen, Pai-Yu
    Yu, Shimeng
    Cao, Yu
    Wang, Yu
    Xie, Yuan
    Yang, Huazhong
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (05) : 1009 - 1022
  • [9] A Memristor-Based Silicon Carbide for Artificial Nociceptor and Neuromorphic Computing
    Liu, Lu'an
    Zhao, Jianhui
    Cao, Gang
    Zheng, Shukai
    Yan, Xiaobing
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (12):
  • [10] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Beiye Liu
    Yiran Chen
    Bryant Wysocki
    Tingwen Huang
    Neural Processing Letters, 2015, 41 : 159 - 167