Semi-discrete Optimal Transport in Patch Space for Enriching Gaussian Textures

被引:1
|
作者
Galerne, Bruno [1 ,2 ]
Leclaire, Arthur [3 ]
Rabin, Julien [4 ]
机构
[1] Univ Paris 05, Lab MAP5, Paris, France
[2] CNRS, Sorbonne Paris Cite, Paris, France
[3] Univ Paris Saclay, CNRS, ENS Cachan, CMLA, F-94235 Cachan, France
[4] Normandie Univ, ENSICAEN, CNRS, GREYC, F-14000 Caen, France
来源
关键词
Optimal transport; Texture synthesis; Patch distribution; IMAGE;
D O I
10.1007/978-3-319-68445-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A bilevel texture model is proposed, based on a local transform of a Gaussian random field. The core of this method relies on the optimal transport of a continuous Gaussian distribution towards the discrete exemplar patch distribution. The synthesis then simply consists in a fast post-processing of a Gaussian texture sample, boiling down to an improved nearest-neighbor patch matching, while offering theoretical guarantees on statistical compliancy.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [1] A Texture Synthesis Model Based on Semi-Discrete Optimal Transport in Patch Space
    Galerne, B.
    Leclaire, A.
    Rabin, J.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2456 - 2493
  • [2] Initialization Procedures for Discrete and Semi-Discrete Optimal Transport
    Meyron, Jocelyn
    COMPUTER-AIDED DESIGN, 2019, 115 : 13 - 22
  • [3] Semi-discrete Optimization Through Semi-discrete Optimal Transport: A Framework for Neural Architecture Search
    Trillos, Nicolas Garcia
    Morales, Javier
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (03)
  • [4] Semi-discrete Optimization Through Semi-discrete Optimal Transport: A Framework for Neural Architecture Search
    Nicolás García Trillos
    Javier Morales
    Journal of Nonlinear Science, 2022, 32
  • [5] A discrete method for the initialization of semi-discrete optimal transport problem
    Lin, Judy Yangjun
    Guo, Shaoyan
    Xie, Longhan
    Du, Ruxu
    Xu, Gu
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [6] Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
    Bansil, Mohit
    Kitagawa, Jun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7354 - 7389
  • [7] Convergence of a Newton algorithm for semi-discrete optimal transport
    Kitagawa, Jun
    Merigot, Quentin
    Thibert, Boris
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (09) : 2603 - 2651
  • [8] Semi-discrete optimal transport methods for the semi-geostrophic equations
    David P. Bourne
    Charlie P. Egan
    Beatrice Pelloni
    Mark Wilkinson
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [9] Semi-discrete optimal transport methods for the semi-geostrophic equations
    Bourne, David P.
    Egan, Charlie P.
    Pelloni, Beatrice
    Wilkinson, Mark
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [10] Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings
    Agarwal, Pankaj K.
    Raghvendra, Sharath
    Shirzadian, Pouyan
    Yao, Keegan
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4514 - 4529